
RWTH Aachen University
Software Engineering Group

Similarity Analysis Framework for Software Product Line
Extraction

Master Thesis

presented by

Muctadir, Hossain Muhammad

1st Examiner: Prof. Dr. B. Rumpe

2nd Examiner: Prof. Dr. S. Kowalewski

Advisor: Christoph Schulze

The present work was submitted to the Chair of Software Engineering

Aachen, 25th October 2016

Eidesstattliche Versicherung

___________________________ ___________________________
Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________
Ort, Datum Unterschrift

Abstract

In the context of a regular software vendor, softwares from different projects can consists
of similar components. Establishing an Software Product Line (SPL) containing these
components and reusing them can reduce development time and increase stability. An SPL
can be created from scratch or it can be extracted from existing components. However,
establishing and maintaining an SPL can have significant overhead and if not maintained, it
can get obsolete quickly. An automated system capable of identifying similar components
can help create and update an SPL while providing useful feedback for future projects.

In the context of FEV GmbH, there have been several researches which can find extrinsic,
semantic and structural similarity among different software components. The method for
calculating extrinsic similarity makes use of the PERSIST guideline, which has been de-
veloped by FEV. The results from this analysis shows the potential similar components in
different projects and provides a good starting point for further structural and semantical
analysis.

Structural similarity analysis method, developed at FEV, matches signals of different
interfaces and uses this matching information to find degree of similarity and also a trans-
formation cost. The matching information is also used to extract a generic core which can
be extended for future development.

Semantical similarity analysis transforms provided component specific test specifications
into Input/Output Extended Finite Automata (I/O-EFA) and tries to find simulation
relations among test specifications of different components. This way it tries to find a
similarity value for provided test specifications which is also the similarity for software
components of corresponding test specifications.

From a higher level, the goal of this thesis is to develop a tool which can import data from
different data sources in an enterprise environment, combine previously described methods
for finding similarity among different components in a more stable and efficient way. And
at the end, generate reports providing necessary information useful for maintaining SPL.
In the context of FEV, an extrinsical analysis tool has been developed several months
ago but has not been used for quite sometime. This tool has to be updated based on the
current project status and run again to generate latest information for current context.
After that this tool has to be integrated with already developed structural and semantical
analysis tool which should be the initial version of the Similarity Analysis Framework.
This framework should be able to generate similarity reports and these reports have to
be evaluated to validate that the integration has been done properly. At this stage,
any possible enhancement and improvements can be performed to the structural and
semantical analysis tools. And finally re-evaluate the reports to verify that nothing has
been broken because of the upgrade.

iii

iv

Contents

1 Introduction 1

2 Foundation and Literature Review 3

2.1 AUTOSAR . 3

2.2 PERSIST . 3

2.3 Software product line . 4

2.4 Agile software product line engineering (APLE) 5

2.5 Extrinsic similarity . 7

2.6 Interface-based structural similarity . 7

2.7 Test-driven semantical similarity . 8

2.8 Design patterns . 10

2.8.1 Inversion of control and dependency injection 10

2.8.2 Abstract factory . 11

2.8.3 Template method . 12

2.8.4 Facade . 12

2.8.5 Strategy . 13

3 Similarity Analysis Framework (SimA) 15

3.1 Framework introduction . 15

3.2 Framework requirements . 16

3.3 Platform requirements . 17

4 Concept 19

4.1 Generic similarity calculation algorithm . 19

4.1.1 Read software component definition 21

4.1.2 Evaluate extrinsic similarity . 21

4.1.3 Read interface definitions . 22

v

4.1.4 Evaluate structural similarity . 23

4.1.5 Read test cases . 25

4.1.6 Calculate semantical similarity . 25

4.1.7 Collective similarity data generation 26

4.1.8 Generate reports . 26

4.2 Global component list generation . 29

4.2.1 Maturity based component selection 30

4.2.2 Export component list . 30

5 Implementation 31

5.1 Code conventions . 31

5.2 Dependencies . 33

5.3 Package structure . 34

5.4 The extrinsic similarity package . 36

5.4.1 Data models . 36

5.4.2 Data import and similarity calculation 37

5.5 The struct analysis package . 38

5.5.1 Data models . 38

5.5.2 Interface import and similarity calculation 40

5.5.3 Enhancements . 41

5.6 The test-based-validation-tool package 41

5.6.1 Data models . 41

5.6.2 Semantical analysis and evaluation 42

5.7 The isddgf package . 43

5.7.1 HTML components . 43

5.7.2 HTML table generation . 45

5.8 The similarity analysis package . 45

5.8.1 SimA data models . 45

5.8.2 SimA data read and write . 50

5.8.3 Similarity calculation . 55

5.8.4 Report generation . 59

5.8.5 SimA workflow controls . 62

5.8.6 SimA object factory . 63

5.9 The similarity client package . 64

vi

6 Tutorial 65

6.1 Resolve dependencies . 65

6.1.1 Installing Python dependencies . 66

6.1.2 Create Jar for test-based-validation-tool 66

6.1.3 Checkout FEV’s PERSIST repository 67

6.2 Execute the full workflow . 67

6.3 Extend SimA . 68

7 Evaluation 71

7.1 Access Data . 71

7.2 Similarity calculation . 72

7.3 Code quality . 77

8 Conclusion 79

Bibliography 81

A Appendix 85

vii

Chapter 1

Introduction

The development of software products is a resource intensive and time consuming task.
Even after the development is finished, it has to be maintained and enhanced to meet
the ever increasing demand. Therefore, it is clear that managing a software development
life cycle (SDLC) is very complicated as well as expensive. For this reason, the enhance-
ment, optimization and improvement of the SDLC process has been an interesting topic
of research for the last couples of years. It is even more interesting for software vendors
who develop and maintain multiple software products at the same time in an enterprise
environment.

In recent years, the automotive domain has seen a rapid growth in the use of software
products. The necessity, complexity and demand of them has been increasing while the
expected time of development is getting shorter [Bro06][RSRS15]. Various sophisticated
features introduced by the industry has transformed a vehicle into a smart device which
puts even more emphasis on software development [PBKS07].

A software product line (SPL) is a set of software systems that share a common set of fea-
tures satisfying the specific needs of a particular market segment and are developed from
a common set of core assets [Nor02]. Software product line engineering (SPLE) focuses
on developing software products based on these reusable core components instead of de-
veloping them from scratch [KLD02]. It has proven to be the methodology for developing
a diversity of software products and software-intensive systems at lower costs, in shorter
time, and with higher quality [PBvDL05].

However, establishment and maintenance of SPL is an expensive task in terms of available
resources and time, specially in an enterprise environment where the vendors has to work
on multiple projects simultaneously and each of them has a deadline. As a result, most
software vendors do not establish an SPL or the established ones become outdated very
soon due to the lack of necessary maintenance and update. Agile software product line
engineering (APLE) approach allows project teams to focus on the actual implementation
while at the same time maintain an SPL with minimum effort [RSRS15].

APLE is basically a collaboration between agile software development (ASD) and SPLE.
ASD is a set of principles for software development where requirements and solutions
evolve through the collaborative effort of self-organizing independent teams [HC01]. The
ability to find similar software components in the context of APLE is very crucial. It is
not only a very important step for establishing SPL but also helps deciding whether to
reuse a component from the product line or create a new one from the scratch.

1

In [BRR14a] and [BRR+14b], a set of metrics have been proposed to measure software
component similarity. It is calculated on three different levels - extrinsic, syntactical and
semantical. Two software components are said to be extrinsically similar if they have the
same name. This first level of similarity measurement provides a primary overview of the
current situation and creates a basis for further similarity analysis. Syntactical similarity is
calculated among the interfaces of different software components. This concept is extended
by structural similarity metric [KRS+16] which matches parameters from various interfaces
and calculates how similar or different they are. Finally, the semantical metric measures
the behavioural similarity of the corresponding interfaces.

In the context of FEV GmbH, a prototype has been developed for calculating extrinsic
similarity based on the principle explained in [BRR+14b]. This Matlab based imple-
mentation reads software component information from different projects and generates a
report which lists the extrinsically similar components from different project. A python
based prototype calculates structural similarity based on the interface definitions which
follows the methodology explained in [KRS+16]. It reads the corresponding component’s
interface definitions in the context of FEV GmbH and analyses the structural similarity
based on their attributes. The test case based semantical similarity calculation proced-
ure is described in [RRS+16]. The java based prototype translates the test cases in to
Input/Output Extended Finite Automata (I/O EFA) and measures the simulation rela-
tion among them. Finally, it generates statements showing the percentages of semantical
similarity for corresponding software components.

These similarity metrics and the results from the above mentioned prototypes are very
useful input to the APLE process. But, the results are generated separately and correlation
among them is not clearly visible. Moreover, each of the prototypes are developed with
very different technologies which adds more complexity to the whole process. A framework,
which is capable of combining the results from different similarity calculation prototypes
and establishing a correlation among them, can increase the usefulness of this similarity
information significantly. Developing such a similarity analysis framework is the main goal
of this thesis.

In the context of FEV GmbH, the framework is capable of accessing data from various
sources and generate similarity information based on them using the above mentioned
prototypes. The similarity results are used to generate HTML based reports which in-
cludes tables and graphs to present corresponding information in a viewer friendly format.
The framework not only provides an unified and convenient interface to communicate
with external prototypes but also exposes various functionalities to flexibly extend the
framework.

The following chapters of this thesis report will explain the framework in more details.
Chapter 2 describes various theoretical concepts which will be used extensively through-
out the whole report. Chapter 3 specifies the requirements which the similarity analysis
framework must implement. Chapter 4 explains different algorithms used during the im-
plementation and illustrates the whole framework from a theoretical point of view. The
implementation details of the framework is laid down in Chapter 5. It also explains cer-
tain related details of previously mentioned prototypes and improvements made to them
during the development of the similarity analysis framework. The quality of the code and
the similarity results are evaluated in chapter 7. Finally, chapter 8 gives a short overview
of the whole thesis and concludes the report.

2

Chapter 2

Foundation and Literature Review

2.1 AUTOSAR

AUTOSAR is an open and standardized automotive software architecture which was
jointly developed by automobile manufactures, suppliers and tool developers [BHDG10].
It stands for (AUTomotiveOpen System ARchitecture). AUTOSAR was developed to
become a common platform upon which future vehicle applications can be developed. It
separates application software from associated hardware resulting in lower cost and high
re-usability. It aims to create a foundation for collaboration on basic functions, while
leaving room for competitive development of innovative new functions.

AUTOSAR divides the ECU (Engine Control Unit) software into three layers - Basic
Software (BSW), Runtime Environment (RTE) and Application Layer (APSW). Various
predefined modules are defined in the Basic Software layer which provides services like bus
communications, memory management, IO access, system and diagnostic services. The
operating system itself is part of this layer. The RTE separates BSW from APSW and
provides an abstraction layer between them. The APSW contains different software com-
ponents each implementing specific functionality of the ECU. RTE executes the software
components from the APSW and provides data exchange service between these compon-
ents and the BSW [www16].

2.2 PERSIST

PERSIST is an extension to the AUTOSAR standard which was developed with agile
methodologies, long-term architecture development and efficient automated development
support in mind. Although, AUTOSAR standardized the generic automotive control func-
tions, certain aspects has not been standardized or finalized. For example, interfaces and
functions for powertrain are incomplete. To address this issue and for establishing an open
standard, PERSIST proposes methodologies for powertrain software development which
are also compatible with AUTOSAR. PERSIST uses the component based software engin-
eering design pattern (CBSE), where the structure of functional components corresponds
to the physical system layout [RPS14].

According to PERSIST, component is a logical unit which can contain several functions.
They are, in general, referred to as units, which have an interface consisting of several

3

signals. Signals can be of different kind (IN, OUT, CAL, FIX, MP) and based on their
kind they are capable to send or receive data. IN-signals support writing data, while
OUT-signals can read data. CAL-signals are specialized input signals, which are usually
used to set certain parameters during the testing phase.

2.3 Software product line

A software product line (SPL) is a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed way
[Nor02]. The concept of product line is not new in manufacturing. Companies like Ford,
Boeing, Dell has been using this approach for long time [Nei09]. But, using this concept for
software development is relatively new and has been proven to be very effective [FFL09].
Software product line brings the concept of strategic and planned reuse which in the past
was mostly opportunistic reuse. Large companies like Hewlett-Packard, Nokia, Motorola
has found that using the SPL approach has remarkable improvements in productivity and
time to market [Nor02].

Software product line engineering is a highly iterative process. At the highest level there
are three essential activities which blend technology and business practices [Nor02]. Figure
2.1 illustrates these essential activities and they are - Core asset development, Product
development and Management.

Product
development

Core asset
development

Management

Figure 2.1: Essential software product line activities [Nor02]

Core assets are the basic building blocks of an SPL which includes architecture, reusable
software components, domain models, test plans, test cases etc. These days assets are
rarely developed from scratch rather some of the assets already exists and the asset base
grow out of them. Each of these assets are products on its own. New products are cre-
ated by taking applicable components from the common asset base and tailoring and/or
adding new components according to the product requirement [McG04]. Product specific

4

non shared features added during product development are not developed using core as-
sets. However, creating products can generate feedbacks which might affect in core asset
development, product plan even product line scope. Management at the technical level and
organization level should have strong commitment to make the SPL approach a success.
Technical management supervises the core asset and product development by ensuring ne-
cessary coordination among the processes and collecting necessary data to track progress.
Organizational management supports the SPL by ensuring proper organizational structure
and providing appropriate resources. Moreover, organizational management determines
funding model and provides necessary funds [Nor02].

2.4 Agile software product line engineering (APLE)

Agile software development (ASD) describes a set of principles for software development
under which requirements and solutions evolve through the collaborative effort of self-
organizing cross-functional teams [HC01]. Adaptive planning, evolutionary development,
early delivery, continuous improvement etc are some of the key features of ASD.

Software product line engineering (SPLE) focuses on establishing a reusable platform
for a specific domain which allows to derive several customized products in an efficient
manner [RSRS15]. It divides the development into two phases: domain engineering (DE)
and application engineering (AE). During the DE phase a software platform in developed
based on the domain specific analysis. Establishing and maintaining a common reference
architecture is also done at this phase. At the AE phase specific products are developed
by reusing the domain artifacts based on the platform specifications.

In the automotive domain, the demand and complexity of different software systems are
growing along with the demanded quality standards. Meanwhile, expected time for devel-
opment is getting shorter. Frequently changing and highly unpredictable demands have
made it very difficult to make a long term plan while maintaining the reusability of soft-
ware components to a certain degree. PERSIST partly solves these problems with its
agile methodologies by being flexible to requirement changes and reducing the duration
of development cycle. Among all these challenges, establishing and maintaining an SPL
has become harder than ever. APLE is a collaboration between ASD and SPLE which
allows the project teams to focus on the implementation of some specific product while
maintaining the SPL with minimum effort [RSRS15]. SPLE and ASD both approaches are
flexible to requirement changes and tries to reduce the time of product development. But
ASD suggests short planning phase while SPLE requires intensive requirement analysis
which results into slower release cycle. APLE tries to reduce the time intensive DE phase.

Figure 2.2 shows an APLE method proposed at [RSRS15]. In the figure, colored and white
activities represents activities performed during DE and AE phases respectively. The
proposed method is based on component-based AE-first approach where a component is
the main item of an architecture and the specification of this component is specified during
AE phase. Therefore, the first step of the proposed method is defining specifications for
the new component. In the next step, the newly specified component is compared with the
reference architecture to estimate the position of the component. If it can not be mapped,
a new position in the project software architecture needs to be assigned. This step should
be avoided if possible as it makes the architecture complex and difficult to maintain.
Therefore, this decision is re-evaluated in another step by the DE process to make sure a

5

1. Specification of

new component

2. Comparison with

reference architecture

6. Comparison with components of the

product line and other projects

3. Assign component to

project architecture

4. Reevaluation of

assignment

5. Implement new component

from scratch

7. Implement component

based on similar

component

9. Implement general

component

8. Variability potential

analysis

yes

no

no

no

yes

yes

yes

no

Component part of the

architecture?

Found existing

component in

reference

architecture?

Similar candidate identified?

Candidate for valid

component

AD

Figure 2.2: Agile software product line engineering focused on application domain.
(colored = DE, white = AE) [RSRS15]

new component is really necessary. If no matching is found after this re-evaluation step,
the component needs to be implemented from scratch. Although, no advantage could be
gained from the product line, the effort to reach this decision is also negligible.

On the other hand, if there is an existing matching component, an extrinsic equality has
been established. In the next step, the proposed component is compared with the product
line and other projects. This comparison is done on structural and semantical level by
the DE process. Test cases has to be available for a semantic comparison. Semantical
similarity can not be evaluated, if no test cases are provided. In case of 100% semantical
similarity, the whole component can be reused without any development effort. If the
level of similarity is less than 100%, it can be used as a base for the new component. This
speeds up the development process during AE. At the same time, possibility to extract a
general item can be identified and if there is a possibility, it is extracted for future reuse.
If conditions are satisfied, this general component can be used instead of developing a new
component. This reduces the development time even more.

Developing a reusable generic component takes time and resources. Therefore, appropriate
analysis should be done to make sure that there are potential demand for corresponding
component. The more the component is reused, the more benefit can be gained from the
spent effort.

6

2.5 Extrinsic similarity

The success of a SPLE largely depends on identifying similar software components existing
in a set of software components. It is also an important step while establishing a software
product line from already existing components. [BRR+14b] presents a formal definition for
identifying extrinsic similarity among software components. For n ≥ 2 software products
pi is a software product where 1 ≤ i ≤ n, which can be decomposed into a set Cpi of m ≥ 1
atomic pieces. Each atomic piece cj where 1 ≤ j ≤ m, is called a software component.
Two software component ci and ck are called extrinsically equal nonetheless to which
product it belongs to iff they have the same name. This similarity information is not only
useful for identifying similar interfaces from different projects but also provides a starting
point for further structural and semantical similarity calculation which are discussed in
following sections.

In the context of FEV GmbH, a prototype based on the described principle was developed.
It has been successfully used to generate a list of components including the frequency in
which they are being reused. It helps the SPLE process to identify the most frequently
used components and emphasize on making them more stable and generic for possible
future use.

2.6 Interface-based structural similarity

Two software components are structurally similar when their input and output paramet-
ers are similar. Base on the number of similar parameters a percentage can be derived
which represents overall structural similarity between these components. As described in
[RSRS15] and also discussed in section 2.4, identifying similar software components is an
important aspect for successfully utilizing an SPL because this is the step upon which
the decision of creating new component depends. An algorithm for calculating structural
similarity is presented in [KRS+16]. Based on the proposed algorithm a prototype has
been developed in the context of FEV GmbH. The algorithm focuses on finding structural
similarity among software components in the context of automotive software engineering.
It uses graph matching technique for similarity analysis. The algorithm is also capable of
extracting generic core from a set of similar components using graph based arborescence.
Graph matching and arborescence are later discussed in more details.

For a graph G = (V,E), where V is the set of vertices and E ⊆ V × V is the set of
edges. A graph matching is the set of edges where no two edge share a common vertex.
In other words, a set of independent edges of G [Bol04]. Given two edges (a, b), (c, d) ∈ E
are independent if (a, c), (a, d), (b, c), (b, d) /∈ E. In a maximum weighted graph matching
the weight of the edges are taken into account and only those are chosen for which the
overall weight is maximum. Structural similarity algorithm [KRS+16] matches different
attributes of all signals from one interface to signals of the other interface which results
into a weighted graph where each edge represents similarity between two signals from
different interfaces and the edges’ weight represents similarity percentage. At this point
a maximum weighted graph matching is performed which results in multiple independent
subgraphs where in each of them one signal is mapped to exactly one signal of the other
interface given that there are one or more matching signals in the original graph.

An arborescence of a directed graph G is a directed spanning tree of G. A subgraph
T = (V,E) of G is an arborescence with respect to root r if and only if T has no cycles

7

and for each v ∈ V and v 6= r there is exactly one edge in F that enters v. After computing
the maximum weighted graph matching, extracting arborescence for each of the subgraphs
provides generic core signal, if any, for each group of similar signals.

1. Interface import

2. Signal similarity analysis

3. Signal mapping calculation

4. Signal transformation path calculation

5. Result evaluation

AD

Figure 2.3: Structural similarity algorithm overview [Keh15]

The algorithm has five consecutive steps as shown in figure 2.3. First step is to import the
interface definitions and store them. Data models used to store the interface information is
independent of the data source making the algorithm flexible. In the next step, interfaces
are compared with each other by comparing their signals. This comparison is done in pairs
of interfaces. Signals from one interface is compared to the signals of another interface.
Therefore, after the comparison there exists a similarity value for each pair of signals from
different interfaces. The comparison of the signals is done based on their properties. The
comparison results into a numeric value which represents the effort to transform one signal
to another. This transformation cost is directed. Meaning, the cost for transforming signal
s1 to s2 can be different from s2 to s1. Next step is generate signal mapping which results
into a mapping where one signal from on interface is mapped to exactly one signal from
the other interface. This mapping is done in a way so that the overall transformation
cost is minimized. At this point, similarity value for two interfaces is available. However,
similarity value is not sufficient when extracting a generic core. The forth step calculates
a transformation path for a group of similar signals, which means it calculates a signal
which all other signals can be transformed to. Finally, the results from previous steps are
gathered and presented in different ways.

2.7 Test-driven semantical similarity

As described in [MTK94], semantically similar components refers to functionally similar
components. In other words, semantically similar software components are components
that exhibits similar behavior. In section 2.6 structural similarity has been discussed.
According to [RSRS15], taking advantage from existing SPL largely depends on finding
similar components and for that, semantical similarity should also be evaluated along with

8

structural similarity. [RRS+16] describes an algorithm to identify semantical similarity
between software components based on test cases. These test cases are transformed into
Input/Output extended finite automata (I/O EFA) and simulation relations (discussed
later) are compared for automatons from different component.

According to [RSVW+15] and [RRS+16], an I/O EFA is a finite state machine enhanced
with input and output behavior which is defined as a tuple, A = (S, s0, D, d0, U, Y,E),
where

• S is the set of states with initial state s0 ∈ S.

• D is the set of internal variables and d0 is the initial value.

• U and Y are respectively the set of input and output variables.

• E is the set of transitions. For oe, te ∈ S a transition from oe to te is defined

as oe
[ge(d,u)]−−−−−−−−−−−−−→

y=he(d,u);d=fe(d,u)
te where guard condition ge ⊆ D × U , output function

he : D × U → Y and data update function fe : D × U → D. All depending on
current variable d ∈ D and input value u ∈ U .

An Input/Output Transition System (I/O TS) is an I/O EFA without internal variables
and its corresponding data update function [ZK12].

According to [RSVW+15], two I/O-TSs A and B are in simulation preorder means for the
same input: (1) the set of all sequences of B’s transition executions is a superset of all
sequences of A’s transition executions, and (2) both having an identical output. Formally,
for I/O-TSs A and B having states SA, SB and transitions EA, EB is a binary relation

R ⊆ SA × SB, where if (a, b) ∈ R and for input u ∈ U the transition a
[ga(u)]−−−−→ a

′ ∈ EA
is enabled then states a and b produces equivalent output and there exists an u-enabled

transition b
gb(u)−−−→ b

′ ∈ EB such that (a
′
, b

′
) ∈ R.

Test driven development (TDD) has become one of the most popular software development
paradigm [MW03]. This method not only substantially reduces the amount of software
bugs but also makes the test cases available at very early stage of development. In a TDD
environment, components can be compared even before they are fully developed using the
method from [RRS+16].

Figure 2.4 illustrates the steps necessary to semantically compare test cases from two
different components and derive a similarity statement. At first, structural similarity has
to be ensured between comparing components and appropriate port matching information
has to be available for components interfaces. In the next step, the test specifications
are converted into I/O-EFAs. Each output of the test specification is transformed a
separate automaton. The input and output variable of the automaton is derived from the
components interface. Test specifications do not specify internal variable and therefore,
the automaton has no internal variable. This makes it possible to avoid the state space
explosion problem [RRS+16]. The test cases usually contains several steps and for each
step a transition in the automaton is created. The number of states also depends on the
number of test steps. For each new transition created from a test step a new target state
is created. Each transition’s target state is the source state of the next transition. These
automata are then transformed to I/O TSs. This is necessary to avoid the state space
explosion during comparison of two automata. In the next step, the simulation algorithm is
executed both ways to find similarity between both automata. The counterexample guided

9

Test specifications
Similarity statement

Create I/O EFAs

Port matching

Check for simulation relation

Evaluation of the performed behavior
abstractions

Behavior abstraction
Return incompatible ports

incompatible

2

1

3 4

5

6

AD

Transform I/O EFAs to
I/O TSs

Transform I/O EFAs to
I/O TSs

Counterexample
found

simulation
successful

compatible

Figure 2.4: Semantical similarity algorithm overview [RRS+16]

abstraction similarity (CEGAS) metric is used to analyze the similarity of an automaton
B to an automaton A by creating simulation relation between their initial state. Behaviors
that can not be simulated are abstracted by provided counterexample. Step 3 to 5 (Fig.
2.4) is repeated until no further counterexample can be extracted. Finally, a similarity
statement is returned based on the amount of abstractions performed.

2.8 Design patterns

In the context of software development, design patterns refers to a set of methodologies for
solving commonly encountered software design problems that can be applied in different
contexts. Design patterns are abstract, implementation independent and each pattern
provides solution for a particular scenario. Appropriate use of design patterns results
into a code that is easily testable, flexible to changes and readable [PULPT02]. This
section explains some of the design patterns which has been used during this thesis. The
discussions are based on object oriented software development paradigm.

2.8.1 Inversion of control and dependency injection

MovieLister

IMovieFinder

MovieFinderImpl
<<creates>>

MovieLister IMovieFinder

MovieFinderImpl

<<creates>>
Assembler

CD

(a) (b)

Figure 2.5: Inversion of control and dependency injection [Fow04]

10

In a typical software development setting, client codes calls the framework codes to take
some service from them. Inversion of control (IoC) suggests to revert this conventional
flow of control where the framework calls the client code [Fow04].

Looking at the figure 2.5(a) [Fow04], MovieLister shows a list of movies and uses the
service provided by MovieF inderImpl to get the list. To do that, MovieLister creates
and calls MovieF inderImpl directly. At this point, if there is a necessity to create another
MovieF inderImpl2 which fetches data form a different source, the MovieLister has to be
changed to use it which essentially makes MovieLister dependent on one of the finders and
their interface IMovieF inder. This situation would not have appeared if the MovieLister
was only dependent on the interface like it is shown in figure 2.5(b). The Assembler takes
care of the dependency by injecting MovieF inderImpl while creating MovieLister. Now,
MovieLister is only dependent on the interface IMovieF inder and Assembler can easily
change the actual implementation.

If IMovieF inder was part of a framework, then the actual implementation can be provided
by the client. In this scenario, the client code is being called by the framework which
inverts the control from the client to the framework. This particular kind of IoC is called
dependency injection (DI) [Fow04].

2.8.2 Abstract factory

AbsObjectFactory

+ create_object_1()
+ create_object_2()

ObjectFactoryA

+ create_object_1()
+ create_object_2()

ObjectFactoryB

+ create_object_1()
+ create_object_2()

AbsObject1

Object1A Object1B

AbsObject2

Object2A Object2B

CD

Client

Figure 2.6: Abstract factory (inspired by [Gam95])

11

As explained in section 2.8.1, creating an object directly from within another object couples
the objects together and makes is harder to replace or update dependencies. Abstract fact-
ory provides a layer of abstraction for creating a set of complex objects. This abstraction
layer is responsible for resolving dependencies and providing object creation service to the
entire framework.

The pattern works as the example shown in figure 2.6 [Gam95]. AbsObjectFactory object
provides the abstraction for creating two different objects AbsObject1 and AbsObject2.
The actual implementation to be created is decided byObjectFactoryA andObjectFactoryB
at runtime. Therefore, the client is not aware of the actual implementation details of the
objects it receives from the factories which makes it very easy to update the dependencies.
In case of new dependencies, creating another factory implementation for them is enough
which requires absolutely no change to the existing code.

2.8.3 Template method

AbstractWorkflow

+ run_workflow()
+ perform_task1()
+ perform_task2()

ConcreteWorkflow

+ perform_task1()
+ perform_task2()

CD

function run_workflow(){
perform_task1();
perform_task2();

}

Client

Figure 2.7: Template method (inspired by [Gam95])

A template method specifies the workflow for an algorithm without specifying the ac-
tual implementation [Gam95]. In the example shown in figure 2.7 [Gam95], a typical
structure of a template method is presented. AbstractWorkflow defines the method
run workflow and this method specifies the steps necessary to perform the particular
workflow. Individual steps are abstracted by AbstractWorkflow and implemented by
ConcreteWorkflow. This provides the opportunity to specify different implementation
for one specific workflow without thinking about the workflow itself.

2.8.4 Facade

The facade pattern hides the complexities of other interfaces and provides an unified inter-
face to interact with them [Gam95]. A facade is basically an object which acts as a gate-
way and delegates method calls to multiple other related objects. In figure 2.8 [Gam95],
AbsFacade provides an abstract interface for accessing multiple objects. ConcreteFacade
specifies implementation for the interfaces by calling several other objects. The objects
providing the actual service and complexities related to them are hidden from the client.

12

Facade

+ do_something()

CD

Object1 Object2 Object3 ObjectN.....

Client

Figure 2.8: Facade design pattern (inspired by [Gam95])

2.8.5 Strategy

AbsStrategy

+ perform_action()

Strategy1

+ perform_action()

Strategy2

+ perform_action()

CD

Strategy3

+ perform_action()

Client

Figure 2.9: Strategy design pattern (inspired by [Gam95])

The strategy pattern provides a common interface for a family of similar algorithms
[Gam95]. Each implementation can specify their own implementation of the algorithm
and they are interchangeable. Figure 2.9 [Gam95] shows an example class diagram for
strategy pattern. AbsStrategy defines the abstract method perform action and the three
different child objects can provide their own concrete implementation for this method.
The client only refers to the abstract object and has no knowledge of the implementation
which makes the implementation decoupled from its use.

13

14

Chapter 3

Similarity Analysis Framework
(SimA)

In the context of a software manufacturer, establishing and maintaining an SPL (section
2.3) can improve quality of the product while significantly increasing productivity. Fur-
thermore, the SPLE, as discussed in section 2.4, is a time and resource extensive process.
The APLE (section 2.4) tries to improve the process by integrating agile methodologies
to SPLE. One of the time intensive and key step of APLE is to decide whether to develop
a new component from scratch or reuse and/or improve existing component from product
line. This chapter proposes a similarity analysis framework for calculating similarity in-
formation among different software components which can significantly accelerate above
mentioned APLE step while making it more accurate.

3.1 Framework introduction

In the previous chapter (Chapter 2), extrinsic, structural and semantical similarities has
been discussed. These measurements provide similarity information among different soft-
ware components on different level. Extrinsic measurements identifies similar software
components from a high level signalling potential similarities on the lower level. Struc-
tural similarity evaluates similarities based on input and output parameters providing
lower level similarity information. Structurally similar components are evaluated for se-
mantical similarity by taking available test cases into account. These measurements alone
can provide useful similarity data but are not enough for establishing or maintaining an
SPL. For this purpose a similarity measurement is required which combines information
from all three levels.

SimA is a Similarity Analysis Framework which can evaluate similarity on extrinsic, struc-
tural as well as semantical level and finally generates reports based on found similarity
information. Later sections in this chapter discusses about SimA in more details and
specifies different requirements which the implemented framework must satisfy.

15

3.2 Framework requirements

A software framework is a platform that provides generic functionalities to solve certain
domain specific problem which can be specialized or overridden to a certain extend to
change the default behaviour [MdL01]. Therefore, a software framework has to be static
in terms of the kind of problems it solves, at the same time, flexible enough to incorporate
different methods to solve these problems. Although, finding similarity among software
components and generating relevant reports are said to be the fundamental functionality
of SimA, the framework should implement following requirements.

Smilarity analysis - SimA should be able to perform similarity analysis on extrinsic,
structural and semantical level. The framework should provide interfaces for each
kind of similarity analysis. Each of these interfaces must be independent of other sim-
ilarity analysis interfaces. This means that the interfaces should be flexible enough
to be used as standalone as well as in conjunction to generate combined similarity
statement. The framework should also be flexible enough to incorporate any other
kind of similarity measurement that might emerge in future.

Report generation - SimA should provide interfaces to generate reports based on found
similarity. These interfaces should only perform operations which are strictly re-
lated to the report generation. Therefore, they should be independent of any cal-
culation/activity which might affect other part of the framework (ex. similarity
calculation) in any way.

Global component list generation - A global component list lists all the components
in an SPL including their identifying properties and usage information. SimA should
provide an interface and possibly a default implementation for generating a global
component list.

Abstract workflow definition - SimA should define the similarity calculation and re-
port generation workflow from an abstract level. Although, it is an essential re-
quirement for different part of the framework to be independent, defining a way
for these parts to work together is also important. For example, defining in which
sequence different similarities should be evaluated is critical for generating a mean-
ingful similarity statement. This requirement is one of the defining characteristic of
SimA.

Source independent I/O - In SimA reading and writing of data should be source inde-
pendent. This means, the framework should always perform I/O operations from an
abstract level. This abstract layer should be able to convert data from and to frame-
works internal data structure when necessary. Preserving external format of the
data can be of importance in certain cases and the mentioned abstract layer should
be able to take care of such cases. It enables the framework to perform various
calculations on this data while preserving the capability to seamlessly communicate
with any external framework.

Swapable components (loose coupling) - Most of the component of SimA should be
swappable by a similar component. This means, part of the framework’s behaviour
can be altered without affecting other parts of the framework. When two distinct
software components exchange messages, they are said to be coupled [LJK+01]. A

16

high degree of coupling is the result of a higher number of messages exchanged
among components making them interdependent. This dependency makes software
architecture complex and difficult to maintain. Therefore, SimA should be designed
in a way so that the coupling factor remains to a minimum.

Task specific component - Each component of SimA should have one and only one
specific task. In software engineering terminology, this characteristic is referred to
as single responsibility principle [Mar03]. It ensures highly modular architecture
making future enhancement, extension and bug fixing easier.

3.3 Platform requirements

The framework is expected to run on Windows systems. It should be highly portable so
that any machine running an updated windows system can execute it with minimum or no
configuration. It should be efficient enough to run on systems with limited resources. How-
ever, the reports generated by the framework has to be absolutely platform independent,
portable and should be viewable without any configuration whatsoever.

17

18

Chapter 4

Concept

This chapter presents the theoretical aspects which has been used during the development
of the SimA framework and the algorithms behind it. The purpose of SimA is to extract
similar software components from a group of software products and present the similarity
results in a report which provides useful information for software product line extraction
and maintenance.

4.1 Generic similarity calculation algorithm

SimA performs similarity analysis sequentially on extrinsic, structural and semantic level.
The steps necessary for similarity calculation are,

r1) read software component definitions from all projects.

r2) read component’s interface definitions.

r3) read component’s test cases.

s1) evaluate extrinsic similarity.

s2) evaluate structural similarity.

s3) calculate semantical similarity.

The sequence in which these steps has to be executed is not fixed. The framework provides
a flexible interface for defining the sequence and it has to follow a certain rule. To explain
the sequence rule, the notation ≺ is defined. For two arbitrary steps x and y, the notation
x ≺ y means that x has to be executed before y. Let S be the set of steps necessary for
similarity calculation, the steps are executed in a sequence that satisfies the condition,

rn ≺ rn+1 ∧ sn ≺ sn+1 ∧ rn ≺ sn (4.1)

where n ∈ {1, 2, 3} and rn, sn ∈ S. For example, according to the condition, the execution
sequence (r1, s1, r2, s2, r3, s3) is valid but (r2, s2, r1, s1, r3, s3) is not.

Evaluation of extrinsic, structural and semantical similarity are evaluated based on soft-
ware component definitions, software interface definitions and test cases respectively.
Moreover, extrinsic, structural and semantical similarity has to be evaluated in this re-
spective order. The condition 4.1 ensures a orderly execution and availability of necessary

19

Read software component

definition from all projects

Evaluate extrinsic similarity

Read interface definitions

of each component

Generate reports

Evaluate structural

similarity

Read test cases

Calculate semantical

similarity

Similar components found No similar components

Similar components found No similar components

AD

Create collective

similarity data

Figure 4.1: SimA lazy loading workflow

Read software component

definition from all projects

Evaluate extrinsic similarity

Read interface definitions

of each component

Generate reports

Evaluate structural

similarity

Read test cases

Calculate semantical

similarity

Similar components found No similar components

Similar components found
No similar

components

AD

Create collective similarity

data

Figure 4.2: SimA pre-loading workflow

20

data at each similarity evaluation stage. Steps necessary for similarity calculation are later
explained in greater details.

Two example workflows are shown in figure 4.1 and figure 4.2. Figure 4.1 demonstrates
a lazy loading workflow. Data necessary for each type of similarity analysis is read only
when necessary which reduces number of disc read operations to a minimum. At the
beginning, all available software component definitions are read from all projects. These
definitions are used to evaluate extrinsic similarity. The extrinsic similarity divides all
software components from different projects into several smaller groups where each com-
ponent belongs to exactly one group and each group contains one or more components
which are extrinsically similar. Interface definitions are imported for all software compon-
ents which has two or more extrinsic matches. Structural similarity is evaluated based on
these interface definitions. For each group generated during the extrinsic similarity step,
structural similarity identifies a port mapping between each possible pair of components
of the particular group which identifies similar ports between each pair. The similarity
information found at this stage and available test cases are used to evaluate semantical
similarity. The semantical similarity identifies behavioural similarity between two output
ports from different components. At this point, a data model holding all the calculated
similarity information is generated. Finally, reports are generated based on the collective
similarity data. Furthermore, at any similarity calculation step if no similarity is found,
a collective similarity is created with similarities found so far and directly go to report
generation.

Current implementation of SimA follows the workflow shown in figure 4.2. It preloads
all necessary data before calculating any kind of similarity. Certain reports generated by
the current implementation shows data availability for different projects. Therefore, it is
necessary read all available information.

Furthermore, it should also be noted that SimA’s flexible workflow structure and the
sequence rule specified by the condition 4.1 generates identical results for similarity cal-
culation only. Any other additional operation (ex. report generation) may need specific
workflow based on the requirements.

4.1.1 Read software component definition

First step of SimA algorithm is to read component definitions from different software pro-
jects. The component definitions are read along with all other project specific information.
Data models are defined to store project and their associated software component inform-
ation. Component definitions are read into a list and stored as an attribute of the project
data model. These models that hold read information are used for further computation.
This not only makes the reading of component definitions customizable without changing
any other part of the algorithm, but also makes the data model reusable. According to
the requirements (Section 3.2), the read operation is source independent. Hence, projects
can have heterogeneous data source or location.

4.1.2 Evaluate extrinsic similarity

Summarizing from the definition presented in section 2.5, if a software product can be
decomposed into two or more atomic pieces which can function independently, then each

21

of those atomic pieces are called components of the particular software product. Software
components from different projects are matched to each other to find extrinsically similar
components. As discussed in section 2.5, two software components are called extrinsically
similar, regardless of which projects they belong to, if they both has the same name. This
principle is used for calculating extrinsic similarity which is explained in algorithm 1.

Algorithm 1 Extrinsic similarity calculation algorithm

1: s← ∅ . set of sets to store similar components
2: f ← ∅ . set of components for which similarity already found
3: for pi ∈ P where P = all software products and i ∈ {1, 2, 3.....n} do
4: for ci ∈ Ci where Ci = components in pi and ci /∈ f do
5: si ← {ci}
6: f ← f ∪ ci
7: for pj ∈ P where j ∈ {1, 2, 3.....n} and j ≥ i do
8: for cj ∈ Cj where Cj = components in pj do
9: if name(ci) = name(cj) then

10: si ← si ∪ cj
11: f ← f ∪ cj
12: s← s ∪ {si}
13: return s

The goal of the algorithm is to divide components from all the projects into several groups
where each group contains components which are extrinsically similar and one component
belongs to only one group. To do that the algorithm defines a list s to hold the groups.
Another list f is defined which maintains a list of components which has already been
compared. Initially, s and f are both empty. At this point, the algorithm goes through
each component ci of project pi and tries to find out a component cj belonging to another
project pj where ci and cj has the same name. A list si, holding components having same
name as ci, is created and finally si is added to s. This is done for all components of all
projects. At each iteration ci is added to f and whenever a match is found cj is added
to f . Thus, f holds all the components which has been compared and possibly already
belongs to a group. Therefore, the component ci is considered for comparison only if it
does not belong to f which significantly reduces the number of iteration as the algorithm
proceeds. Once the algorithm has finished iterating all projects, s holds extrinsically
similar components in separate groups.

4.1.3 Read interface definitions

Interface definitions of different software components are read and stored as an attribute
of the corresponding component. Data model, specified by the implementation, is used to
hold the interface definitions which is used for further computation. In accordance to the
requirement described at section 3.2, the reading of interfaces is independent of the type
or location of the source. Hence, any other part of the SimA algorithm is disassociated
with this particular step.

22

4.1.4 Evaluate structural similarity

Interface of a software component consists of a set of signals. According to [Keh15], a
signal si ∈ S, where S is the set of signals of interface ci, is defined as a tuple si =
(N,T,R,W,D,U) where,

• N is a string representing the name of the signal.

• T is the direction of the signal. Direction can be either incoming or outgoing.

• R = {min,max}, where max is the upper bound and min is the lower bound.

• W is a scalar a where a ∈ {1, 2, 3.....n} and a ≥ 1

• D ∈ {UINT8, UINT16, UINT32, UINT64, INT8, INT16, INT32,
INT64, FLOAT,BOOL, STRUCT, V OID}

• U is any basic or complex physical unit.

The structural similarity evaluation process is performed in several steps (Section 2.6).
At the beginning of the comparison process, all signals from one interface are compared
with all signals of another interface. The comparison of two signals is broken down to the
comparison of their attributes [Keh15]. A metric is used during the comparison process
which ensures a defined rule. The metric generates a cost value which represents the effort
to transform one signal to another. This cost is basically a weighted average of the trans-
formation cost for all attributes of both signals. A higher transformation cost corresponds
to a lower transformation effort [Keh15] and higher level of similarity. The transforma-
tion cost is represented by a value x ∈ [0, 1] where 0 represents infinite transformation
cost and 1 represents no transformation cost. If one or more signal attributes can not
be transformed, it is represented with infinite transformation cost. The transformation
cost between two signals is infinite when one or more of their attribute’s transformation
cost is infinite [Keh15][KRS+16]. Two functions named transp and simp are defined in
[KRS+16]. The function transp(p1, p2, p) identifies if any transformation is possible from
value p1 to value p2 of same attribute p. The function simp(p1, p2, p) calculates the trans-
formation cost x when transp(p1, p2, p) is true. For signal attributes, both functions are
described as follows,

• name (N) - transp(n1, n2, name) is always true for names n1 and n2. simp(n1, n2, name)
is calculated based on the Levenshtein distance [Lev66].

• width (W) - For two given widths w1 and w2, transp(w1, w2, width) is true if and
only if w1 = w2. Therefore, simp(w1, w2, width) := 1.

• range (R) - For two ranges r1 := [min1,max1] and r2 := [min2,max2] the function
transp(r1, r2, range) is true if and only if r1 ⊆ r2. For R1 := max1 − min1 and
R2 := max2 −min2, transformation cost is calculated as,

simp(r1, r2, range) :=
max(R1, R2)− |R1 −R2|

max(R1, R2)
(4.2)

• data type (D) - Data type d1 can be transformed to data type d2 if and only if
d1 can be represented with d2. For example, an 8 bit integer can be represented

23

with a 16 bit integer and in this case transp(int8, int16, datatype) is true. The
transformation cost is calculated as,

simp(d1, d2, datatype) :=
min(bit(d1), bit(d2)

max(bit(d1), bit(d2)
(4.3)

where bit(a) returns the number of bits necessary for storing data type a.

• unit (U) - For two units u1 and u2, transp(u1, u2, unit) is true if and only if the
u1 can be converted to u2. For example, meter can be converted to kilometer. A
quantity Q is expressible with base SI units as [Q] := 10n ×mα × kgβ × sγ × Aδ ×
molζ × cdη where −24 ≤ n ≤ 24 [TT01]. Therefore, the transformation cost can be
written as,

simp(u1, u2, unit) :=
49− (|n1 − n2|)

49
(4.4)

Once the transformation cost for each attribute is available, the transformation cost from
signal s1 to s2 is calculated as,

transs(s1, s2) :=

∑
p∈props

weightp × simp(prop(s1, p), prop(s2, p), p)

|props|
(4.5)

where transs(s1, s2) returns the transformation cost from s1 to s2, props is the set of
signal attributes, weightp is the weight for attribute p ∈ props and prop(s1, p) returns the
value of attribute p for signal s1. The result of this step is a directed complete bipartite
graph where each signal from one interface has a directed edge to all signals from the other
interface. The value of the edge represents a directed transformation cost for the vertices
it connects.

In the next step, a mapping is created between signals from different interfaces where each
signal from one interface is mapped to exactly one signal from the another interface. The
mapping is created so that the total transformation cost from one interface to another
interface is maximized [Keh15]. It is possible to have signals that do not have a mapped
counterpart. Signal pairs having the an infinite transformation cost are not mapped. At
the end of this step, the bipartite graph generated in the previous stage is reduced where
one vertex is connected to only one another vertex with a directed edge where the value
of that edge is finite.

At this point, the directed similarity between two interfaces can be calculated. Let S1 and
S2 be set of signals for interfaces I1 and I2 respectively. The similarity from I1 to I2 can
be calculated with the function simi(I1, I2) which is defined as,

simi(I1, I2) :=

∑
s1∈S1,s2∈S2

transs(s1, s2)

|S1|
(4.6)

Therefore, the output of the structural similarity step is a signal mapping which maps
signals form one interface to signals to other interface and an attribute based similar
which specifies how much similarity the mapped signals are.

24

4.1.5 Read test cases

Test cases for each software component are read and stored as an attribute of the cor-
responding software component. Like any other read operations in the SimA algorithm,
the reading of test cases follows requirements defined in section 3.2 and is absolutely
independent of any other part of the algorithm.

4.1.6 Calculate semantical similarity

As discussed in section 2.7, semantical similarity refers to behavioural similarity. In
[RSW+15], a method is presented to find behavioural compatibility between two simulink
models. Unfortunately, simulink models contains internal variables. These variables must
be replaced with all possible values to perform the analysis which causes a state space
explosion problem [Kot03]. Therefore, semantical similarity is calculated based on test
cases associated to software components [Thi15]. A given test specification includes one
or more tests for exactly one component. Tests may be individual test cases or sequences
of test cases. The test cases are executed in a predetermined order and each test case can
influence the next test case. Test cases only contain input and output behaviour of the
component without any internal variables. Hence, the state space explosion problem is
avoided.

[Thi15] presents the process of semantical similarity evaluation based on test cases. The
process receives two test specifications as input which, in ideal cases, should belong to dif-
ferent software components. These test specifications are converted to I/O EFAs (section
2.7). One I/O EFA is created for each output port [RRS+16]. These I/O EFAs has to be
deterministic for further analysis.

After creation, the I/O EFAs are tested for compatibility. Here compatibility refers to
compatible data type and value ranges for each input port. Ports of the I/O EFAs from
one test specification needs to be mapped to ports of the I/O EFAs from other test
specification. If a test specification has more ports than the other, the extra ports are
mapped to constant values. These port mappings are generated during the structural
similarity phase. If there are ports that are not mapped, further analysis is not possible
and the whole process stops here.

Parser Interpreter
Automata-

Construction
Comparison Auswertung

Automata-
transformation

Workflow of the Prototype

CTE-
Files

Selected
Data

I/O-TestDSL
ASTs

MAA
ASTs

Statement

Result

Read Data Translate Data
I/O-EFAs

create
Compare
I/O-EFAs

Modify
I/O-EFAs

Evaluate
results

[Modification needed]

[Modification not needed]

AD

Figure 4.3: Workflow of the semantical similarity prototype [Thi15]

The semantical similarity is calculated based on the simulation relation (section 2.7)
between two automatons A and B. For this purpose, I/O EFAs created in previous step

25

needs to be transferred to I/O TSs A′ and B′ (section 2.7) [RSW+15]. Counterexample
Guided Abstraction Similarity Metric (CEGAS) [RRS+16] is used to analyse the simil-
arity of B′ to A′ by creating a simulation relation. The simulation algorithm proposed
in [RSW+15] provides counterexample when B′ cannot be simulated by A′. The output
function of the transition in which B′ defers from A′ are removed iteratively based on
the counterexamples and replaced with φ. φ represents an undefined behaviour and the
CEGAS metric is designed to match it with any arbitrary behaviour. Thus, the behaviour
of B′ that does not match A′ is abstracted iteratively until B′ can be simulated by A′.
After abstraction, automatons A′ and B′ are changed to A′′ and B′′ respectively. The
degree of semantical similarity in the direction A to B represented with GCEGAS(A,B)
[RRS+16] is calculated as,

GCEGAS(A,B) :=
|{e|e ∈ EA′′ ∪ EB′′ , he 6= φ}|
|{e|e ∈ EA′ ∪ EB′}|

(4.7)

where, EX is the set of transitions of any automaton X and he is the output function of
corresponding transition. Therefore, the semantical similarity is the ratio between amount
of transitions that has a defined output and total amount of transitions in unmodified
automatons.

As stated earlier, each automaton represents an output port of a particular software com-
ponent. Therefore, the semantical similarity between two automata from different com-
ponents represents the similarity between those specific output ports.

4.1.7 Collective similarity data generation

At this step, all calculated similarities are stored in a data model and is used for any further
computation. While storing similarity information, the data model also calculates useful
correlations among those data. For example, extrinsically similar components for a given
name, structural and semantical similarity information for a group of extrinsically similar
components, all structural and semantical similarity information for a given component
etc. These information are useful for querying similarity information based on different
criteria. The data model uses hash based data structure which results into very fast read
and write operations [ML75]. Therefore, the similarities are calculated once, stored in
collective similarity data model and fetched when necessary.

4.1.8 Generate reports

As discussed in 3.1, the whole purpose of the similarity calculation and the SimA frame-
work is to help developers establish and maintain an SPL following the APLE methodology.
The report generation module is flexible and can be extended to generate different kind
of reports. The SimA framework by default generates two kind of reports.

4.1.8.1 Project status

This report presents various information about different software components for each
project. These information are presented in two different kind of tables. The projects
status table, as an example shown in figure 4.4, shows the overview for each project. And

26

Project name Amount of
entries

Part of global
component

list

Not part of
global

component
list

Miss
external ID

Miss
Functional
description

Miss
Interface

Miss
Simulink
model

Miss Test
cases

Fully
provided

Project 1 100 80 (80 %) 20 (20 %) 8 (8 %) 8 (8 %) 8 (8 %) 8 (8 %) 8 (8 %) 8 (8 %)

Project 2 100 80 (80 %) 20 (20 %) 8 (8 %) 8 (8 %) 8 (8 %) 8 (8 %) 8 (8 %) 8 (8 %)

Figure 4.4: Project status report table structure.

Layer Comp. 1 Comp. 2 Comp. 3 Comp. 4 Component Unit Functional
description

Interface Simulink
Model

Test cases

APSW Pt TrS CoTrs - Exp Exp_Exam1 An example
component

1 1 3

APSW Pt TrS CoTrs - Exp Exp_Exam2 An example
component

1 1 3

Figure 4.5: Software component list table structure.

each row of the software component list table (example in figure 4.5) presents information
about one specific software component.

For the project status table, as the figure 4.4 shows, the first column specifies the pro-
ject and other columns shows various information about the software components of the
respective project. For example, the ”Miss Interface” column shows the number and
percentage of software components missing an interface definition. The coloured and un-
derlined texts are links to component list table each having different data listed. For
example, the links of the ”Part of global component list” column for Project 1 row leads
to a component list table that lists software components from Project 1 which are part of
global component list.

4.1.8.2 Component usage

This report is a collection of interconnected reports which presents the computed simil-
arities in a viewer friendly format. As shown in figure 4.6, the similarity overview report

<Comp.
Info.>

… Unit Extrinsic
matches

Max.
Struct.

Similary

Avg.
Struct.

Similarity

Min.
Struct.

Similarity

Max.
Sem.

Similarity

Avg. Sem.
Similarity

Min.
Sem.

Similarity

Project 1 … Project n

… … Exp_exm 3 (10%) 100% 33.33% 10 % 100% 33.33% 0 % Used … -

… … Exp_abc 3 (10%) 100% 33.33% 10 % 100% 33.33% 0 % Used … -

1 2 3 4

100

50

0

A
m

o
u

n
t

o
f

u
n

it
s

Extrinsic matches 1

0

2

> 2

Figure 4.6: Similarity overview report example.

27

lists all unique software components from different projects, their usage and similarity
information. At the beginning, the bar diagram and pie chart shows a summery regarding
the extrinsic matches.

In the table, first few columns provides information about the software component itself
(like the report shown in fig. 4.5). The ”Extrinsic matches” column shows how many
extrinsic matches are available or how many projects are using this particular software
component. The next few columns show maximum, average and minimum similarity
information for structural and semantical analysis. These columns links to a more detailed
similarity report for the information presented in them (later explained with figure 4.9).
The last few columns shows which projects are using it.

However, the text in the ”Extrinsic matches” column links to the structural similarity
overview report which is shown in figure 4.7. The report starts with a table which presents

Project Layer Comp. 1 Comp. 2 Comp. 3 Comp. 4 Component Unit Functional
description

Interface Simulink
Model

Test cases

Project 1 APSW Pt TrS CoTrs - Exp Exp_Exam1 Example
description

1 1 3

Project 2 APSW Pt TrS CoTrs - Exp Exp_Exam1 Example
description

1 1 1

Project 3 APSW Pt TrS - - Exp Exp_Exam1 1 0 1

Project 1 Project 2 Project 3

Project 1 - 80 % 100 %

Project 2 90% - 50%

Project 3 100% 50% -

Project 1 Project 2

100

50

0

A
vg

. s
tr

u
ct

u
ra

l s
im

ila
ri

ty

Project 3

P
ro

je
ct

 2

P
ro

je
ct

 3

P
ro

je
ct

 1

P
ro

je
ct

 3P
ro

je
ct

 1

P
ro

je
ct

 2

Figure 4.7: Structural similarity report example for different projects.

information about extrinsically matched software components from different projects. The
next table and the multi-bar diagram presents the structural similarity information for the
corresponding components. For example, the first row of the table shows how similar is
the component from Project 1 to the ones from Project 2 and Project 3. One important
thing to note here is that the structural similarity information presented here are directed.

As explained earlier in section 4.1.4, software component’s interfaces are comprised of
multiple signals and structural similarity information regarding them are shown in the
signal’s structural similarity overview report which is shown in figure 4.8. This report

Interface Project 1 Interface Project 2 Interface Project 3

Signal 1 (100/60) Signal 1 (100/40) Signal 1 (60/40)

Signal 2 (100) Signal 2 (100)

Signal 3

Signal 4

Signal 5

(a) Without semantical similarity information

Interface Project 1 Interface Project 2 Interface Project 3

Signal 1 (100/60, sem 100/0) Signal 1 (100/40, , sem 0/0) Signal 1 (60/40, sem 50/0)

Signal 2 (100, sem 100) Signal 2 (100, sem 100/0)

Signal 3

Signal 4

Signal 5

(b) With semantical similarity information

Figure 4.8: Signal similarities overview example for multiple interfaces

shows which signals are similar to which ones from different project and their similarity

28

percentage. Semantical similarity percentage is also shown (fig. 4.8b) for signals which are
eligible for semantical analysis. Each percentage number beside the signals names links
to even more detailed attribute similarity report (fig. 4.9) for corresponding signals. This

First Second Semantical LabelType Name DataType Unit Width

Project 1 Project 2 40/50 (OUT/OUT)
Equal, 100%

(abc, abd)
Similar, 90%

… … …

Details output:
Error messages 1

Figure 4.9: Signal attribute similarity report example

report shows different attribute values for the corresponding signals and their similarity
information. Semantical similarity information is also shown for eligible signals. A section
below the table shows some more details regarding the semantical similarity.

4.2 Global component list generation

Global component list is a list of all the components which are used in different projects.
It provides information about which software components are currently available and are
being used by different projects. These information are very useful for creating an SPL
from scratch. The SimA framework is capable to generate this global component list.
Figure 4.10 shows the generic workflow for generating the list.

1. Read software component

definition from all projects

2. Find extrinsically similar

components

3. Maturity based component

selection

4. Save results

AD

Figure 4.10: Calculate global component list

Step 1 and 2 from figure 4.10 are similar to the similarity analysis steps described in 4.1.1
and 4.1.2 respectively. Therefore, step 3 and 4 are explained here.

29

4.2.1 Maturity based component selection

As explained in section 4.1.2, extrinsic analysis generates groups of extrinsically similar
components. In this step, exactly one component is chosen from each of those groups. This
selection is done based on the maturity of the component and the one with highest maturity
is chosen. If there are multiple components in a group with similar maturity status, one
of them is chosen randomly. Since, a component can be available from multiple sources,
it takes the most stable one while computing the global list.

4.2.2 Export component list

Component list generated in the previous step is exported as a file. This file contains
different information about each component, it’s usage in different projects and degree of
reuse. In current SimA implementation, the file is exported as an excel file. Each row of
the excel file holds data about one component.

30

Chapter 5

Implementation

Based on the requirements discussed in chapter 3 and according to the theoretical concept
explained in chapter 4, the SimA framework has been developed. The development and
testing of the framework was done in the context of FEV GmbH1. Currently, it is a part of
FEV’s nightly build scripts and generates valuable reports supporting the SPL activities.

This chapter thoroughly discusses the implementation details of SimA. The discussion
starts with different individual components and finally, ends with explaining how they
work together to calculate similarity and generate corresponding reports.

5.1 Code conventions

Python2 2.7 has been chosen to develop the SimA for its flexibility, object oriented nature,
rich built in functionalities and a huge ecosystem of freely available open source libraries.
The SimA framework follows the coding style and guideline developed for python by
Google [PPJ+13]. Some of the most important ones are discussed here.

Import module - Modules or classes should be imported using the full package path as
shown in listing 5.1.

1 # this is the correct way
2 from similarity_framework.data.models import RepositoryItem
3

4 # this is not the right way
5 from models import RepositoryItem

Listing 5.1: Importing modules.

Exceptions - To signal some failed operations or change the flow of the code, exceptions
can be used. However, it should be used with caution. Any custom exception class
must extend from the build-in Exception class. Exceptions should be raised us-
ing the standard "raise MyException(’Error message’)" syntax. Catch-
ing the base class Exception in a try/except block will catch any exception and
possibly make debugging very difficult. Therefore, catching Exception should be
avoided unless it is reraised.

1http://www.fev.com/de/germany.html
2https://www.python.org/

31

Global variables - In python global variables are the ones declared on the module level.
Using global variables can change module behavior during import [PPJ+13]. There-
fore, use of global variable should be avoided as much as possible.

Single line expressions - Short hand single line expressions like generator expression,
list comprehension and conditional expressions are very useful. But, they should
only be used for simple cases. In case of complex situation, standard python loop or
if/else syntax should be used. Generator expressions are useful for lazy loading
scenarios. But for complex cases a function with yield statement should be used.

Default arguments - In general, default arguments provide a very useful way to assign
values to method parameters if no value has been provided. It is particularly useful
for functions with lots of parameters. It also eliminates the necessity to define
multiple different methods with same name but varied parameters. However, default
argument for mutable types (e.g. list, dict) should be avoided. As shown in listing
5.2, mutable default values can be modified by the function and therefore can result
into wrong output.

1 def print_list(data=[]):
2 data.append(4)
3 print data
4

5 print_list() # output [4]
6 print_list() # output [4, 4]

Listing 5.2: Mutable default argument problem.

Classes - Each class, including nested classes, should have a parent class. If a class
inherits from no other class, it should be explicitly inherited from object. Listing
5.3 shows correct and incorrect class definitions.

1 class MyClass(object): # this is correct
2 pass
3

4 class InheritedClass(MyClass): # this is also correct
5 pass
6

7 class AnotherClass: # this is NOT correct
8 pass

Listing 5.3: Class inheritance from object.

Access control - Accessor or get/set functions should be avoided if the access to the
variable is simple which minimizes the cost of function calls. Properties can be
used if the access to the variable requires some additional functionality. Accessor
functions should only be used in case of complex data access.

Indentation - Mixing tab and space for indentation must be avoided. In general, using
space is encouraged and each indentation should be 4 spaces long.

Naming conventions - Table 5.1 lists the naming conventions specified by [PPJ+13].
The first column lists the type of the entity, the second column shows the naming
convention for corresponding type if it is defined as public member and the third
column shows the naming convention if it is internal.

32

Table 5.1: Naming conventions [PPJ+13]

Type Public Internal

Packages lower with under

Modules lower with under lower with under

Classes CapWords CapWords

Exceptions CapWords

Functions lower with under() lower with under()

Global/Class Constants CAPS WITH UNDER CAPS WITH UNDER

Global/Class Variables lower with under lower with under

Instance Variables lower with under lower with under (protected)

Method Names lower with under() lower with under() (protected)

Function/Method Parameters lower with under

Local Variables lower with under

5.2 Dependencies

The SimA framework provides similarity calculation and report generation functionality in
the context of FEV GmbH. This implementation is dependent on various other libraries,
packages and projects. The reporting module [Kha16], structural similarity calculation
module [Keh15] and the semantical similarity [Thi15] are the project dependencies. Dif-
ferent python packages are also required. Some of these packages are required by the above
mentioned projects and some are required by SimA itself. PIP3 is the python package
manager used to locate and install these dependencies. The Python packages and libraries
upon which SimA is dependent are listed below. All of these packages can be found at the
Python package index4.

xlrd - Read and write data to older excel files (e.g. xls). This package is a dependency
for structural similarity analysis project [Keh15].

pint - It is used to manipulate physical units (e.g. km,m/s2). The structural similarity
framework [Keh15] uses it to compare signal units.

pyparsing - This library can parse simple expressions. It is used by structural similarity
framework [Keh15] to check unit convertibility.

networkx - A python based graph manipulation library. It is used extensively by struc-
tural similarity framework [Keh15] for managing its internal data structures.

svn - It provides a python interface to execute SVN commands.

openpyxl - This package can read and write newer (e.g. xlsx) excel files. It is used to
read and write global unit list files.

numpy - It is a library capable of performing complex numerical calculations. It is used
during extrinsic similarity calculation.

mlab - To call Matlab functions from python, this package is used. Matlab scripts
provided by FEV GmbH are used to read different data from the company repository.

3https://wiki.python.org/moin/CheeseShopTutorial#Pip
4https://pypi.python.org/pypi

33

enum34 - Enumerations was first introduced to at python 3.4. enum34 package is a
backport for all python versions older than 3.4. This package is used by SimA to
represent different enumerations.

beautifulsoup4 - It is a pure python based HTML scrapping library. The reporting
package [Kha16] uses it for HTML generation.

Jinja2 - A template engine written in pure python. It is being used by the reporting
package [Kha16] to dynamically generate HTML files based on templates.

5.3 Package structure

The SimA framework and it’s project dependencies are structured into several packages as
shown in the figure 5.1. The diagram shows all the major packages, sub-packages and mod-
ules. Modules are the leaf nodes of the hierarchy tree which contains classes and functions
that provide various functionalities. Among these packages the similarity framework
and extrinsic similarity were developed as part of this thesis. The purpose and
functionality of these packages are briefly discussed in this section.

enums

similarity_framework

PD

models

data

exceptions

interfaces

data_curd

data_processor

object_factory

workflow_controls

implementations

data_curd

data_processor

object_factory

workflow_controls

similarity_calculation

_data_conversion

report_generation

extrinsic_similarity

_data_validator

command_runner

constants

evaluator

models

excel_operations

exceptions

readers

struct_analysis

controller

analysis comparison

model

comparison units

excel_import

comparison

test-based-validation-tool validation_tool_proxy

similarity_client

isddgf

html components

Figure 5.1: SimA package structure

Figure 5.2 shows the package dependencies. Packages marked with grey colour are library
packages which are installed with different package managers (e.g. pip or maven). The
similarity client package is the entry point for executing the full SimA workflow.

similarity framework - The SimA framework is implemented under this package. It
is divided into three sub-packages. The data package contains all the data model
definitions. Different python abstract classes are defined under the interfaces
package. The SimA framework provides various functionalities by exposing related

34

similarity_framework

extrinsic_similarity struct_analysis isddgf validation_tool_proxy

test-based-validation-tool

similarity_client

xlrd pyparsingpintnetworkx

openpyxl mlab

enum34

beautifulsoup4 jinja2

Maven
dependencies

svn

Figure 5.2: Package dependencies.

interfaces through these abstract classes. The implementations package contains
modules which provide implementations of the interfaces in interfaces package.

extrinsic similarity - This package provides the extrinsic similarity calculation and
related data read-write functionalities. It is divided into several modules. The
evaluator module contains classes and functions to calculate extrinsic similar-
ity (sec. 4.1.2) and global component list calculation (sec. 4.2). The readers
module provides functionalities like reading project configuration excel file, reading
global component list excel file etc. The command runner module which contains
the functionality to run matlab functions from python interface via the mlabwrap
library (sec. 5.2).

struct analysis - Structural similarity and related functionalities are provided by this
package. It was developed as by [Keh15] and is a dependency of the SimA framework.
The package diagram shown in figure 5.1 only shows the packages and modules
which are used by the SimA framework. The model package holds all data model
definitions. Functionalities like similarity calculation and data reading are provided
by the controller package. For example, the excel import module provides
functions for reading the software component definitions.

test-based-validation-tool - This package calculates semantical similarity based on the
test cases as described in section 4.1.6. It is a dependency of the SimA framework
and was developed by [Thi15].

validation tool proxy - This package provides a simple interface for communicating
with the test-based-validation-tool package. Unlike the SimA framework,
test-based-validation-tool package is developed with Java. Therefore dir-
ect communication is not possible from python. validation tool proxy provides
functionality which can be called from python interface and returns the results as
json sting which can be read and converted into python objects.

35

isddgf - The implementation of reporting module of SimA framework is dependent on
this package. It was developed by [Kha16] and provides python based interfaces to
create html based reports.

similarity client - This package works as an entry point to the SimA framework. The
framework provides interfaces which are context independent. But, the implement-
ations to those interfaces are dependent to the context of FEV GmbH and requires
certain inputs (e.g. path to the SVN repository) which are specific for the com-
pany. The similarity client provides these values to the SimA framework and
initiates the similarity calculation and report generation workflow.

5.4 The extrinsic similarity package

The extrinsic similarity package is an standalone implementation which, in the
context of FEV GmbH, can read data from different projects, find extrinsically similar
software components from them and finally generate an excel based global unit list. The
extrinsic similarity calculation is based on the algorithm explained in section 4.1.2.

Project

+ project_name : string
__units : Unit [0..*]

GlobalProject

__units : GlobalUnit [0..*]

Unit

+ unit_name : string

GlobalUnit

+ used_in_projects : string [0..*]

SimilarityResult

+ similarities : SimilarityResultEntry [0..**]

SimilarityResultEntry

+ unit_name : string
+ used_in_projects : Project [0..*]

CD

* *

*

Figure 5.3: extrinsic similarity data models

5.4.1 Data models

The extrinsic similarity package has its own set of data models. The important
ones are shown in figure 5.3.

The Project model represents a project in the context of FEV GmbH. It contains in-
formation like corresponding project’s SVN repository location, component list file path
etc. It holds a list of software components and each of these components are represented
by Unit. Each Unit is primarily identified by its name. It holds various other attributes
like the interface definition file location, maturity status of the unit etc.

GlobalProject and GlobalUnit extends from Project and Unit respectively. The
GlobalUnit represents a software component which has been used in one or more soft-
ware projects. Therefore, it has an additional attribute called used in projects. This

36

attribute is the list of those project names which uses the corresponding software compon-
ent. A GlobalProject is a dummy project which holds a list of GlobalUnit. This
list represents the global software component list and also contains usage information for
each of those components. In the context of FEV GmbH, a global component list is stored
in an excel file where each row contains information for one component and its usage. The
GlobalProject is a representation of this global list.

The SimilarityResult model represents the calculated extrinsic similarity. It is ba-
sically a collection of SimilarityResultEntry. Each SimilarityResultEntry
contains a name of an Unit and list of Project which are using it.

5.4.2 Data import and similarity calculation

Besides the extrinsic similarity calculation, the SimA framework utilizes some of the data
read/write functionalities implemented by the extrinsic similarity package. Figure
5.4 shows the key entities which are used by the SimA framework.

UnitEvaluator

+ generate_global_unit_list (projects)
+ compare_multiple_projects (projects)

ExcelOperations

+ read_excel (path, sheet)
+ write_excel (path, sheet, data)
+ append_sheet (path, sheet, data)

GlobalProjectExporter

_excel_operations : ExcelOperations

+ export_excel (project, path)

ProjectListConfigReader

+ component_list_reader : ComponentListExcelReader
+ excel_operations : ExcelOperations

+ read_project_config (path)

ComponentListExcelReader

+ read_component_list (path)

GlobalProjectReader

+ excel_reader : ExcelOperations

+ read_global_project (path)

run_matlab_command ()

CD

Figure 5.4: Key classes of extrinsic similarity package

ExcelOperations - This class provides necessary functions to read and write to excel
files and belongs to excel operations module. It uses the openpyxl (sec. 5.2)
package to perform the actual read/write. The read excel function reads specified
sheet of an existing excel file. The write excel function creates a new excel file
and writes data to specific sheet of that file. It is also possible to add a new sheet
to an existing excel file with the append sheet function.

GlobalProjectReader - In the context of FEV GmbH, the global list of software com-
ponents are stored as an excel file and this list belongs to a dummy project called
global project. Each entry of this list provides information about the software com-
ponent and the names of the projects which are using this particular component.
The GlobalProjectReader reads this component list excel file and returns it as
a GlobalProject. The ExcelOperations is used for reading this excel file.

37

GlobalProjectExporter - This class exports a GlobalProject to an excel file. This
excel file, as described earlier, lists all software components from all projects and
their usage information. ExcelOperations is used for writing to an excel file.

ComponentListExcelReader - Software component definitions from different projects
are read with ComponentListExcelReader. In the context of FEV GmbH, each
project has an excel file based software component list. This list contains software
component information like it’s name, composition levels, interface information and
various other data.

FEV GmbH provides Matlab scripts to read these component list files. The mat-
lab function getProjectUnits, which is part of FEV’s toolchain system, reads
the excel files and returns the data as matlab struct. Another matlab function
exportUnitsToJson, developed along extrinsic similarity package, which
takes path to the component list files and calls the FEV scripts with this path and
converts the returned results to json string and writes it to a temporary file. With
the help of mlabwrap (sec. 5.2) package, ComponentListExcelReader calls the
exportUnitsToJson function and reads the exported json data from the tempor-
ary file. Finally, this data is converted to a list of Unit objects.

ProjectListConfigReader - In the context of FEV GmbH, basic information about
all software projects are stored in an excel file. Each row of this file contains in-
formation like name of the project, project type, project’s SVN repository path
etc. ProjectListConfigReader reads the configuration file and returns a list of
Project objects. ExcelOperations is used for reading the excel file.

UnitEvaluator - This class can perform various analysis based on the data available
from different projects. The function compare multiple projects calculates
extrinsic similarities among provided list of Project and return the results as
SimilarityResult object. This calculation is implemented based on the al-
gorithm explained in section 4.1.2.

The UnitEvaluator class can also generate global component list with func-
tion generate global unit list. It takes a list of Project and return a
GlobalProject representing the global component list.

5.5 The struct analysis package

The struct analysis package provides an implementation for performing structural
comparison among interfaces of different software components [Keh15]. In the context of
FEV GmbH, interface of a software component is stored as a excel file which lists all in
and out signals related to corresponding interface. The struct analysis tool can read
these interface sheets and perform an attribute value based structural similarity analysis
on them (algorithm explained in section 4.1.4). It can also generate various other similarity
information based on the analysis results.

5.5.1 Data models

In figure 5.5 a class diagram has been presented showing data models which are important
in the context of SimA framework. Descriptions, based on [Keh15], regarding these data
models are provided below.

38

UnitInterface

+ name : string
+ input_signals : Signal [0..*]
+ output_signals : Signal [0..*]
+ cal_signals : Signal [0..*]

Signal

+ name : string
+ min : float
+ max : float
+ width : float
+ description : string
+ object_class : string

Typedef

+ name : string
+ description : string
+ min : float
+ max : float

⁞

CD

*

1

CompareResult

+ cost_graph
+ similarity_graph

+ get_signal_similarities()
+ get_signal_similarity(Signal s1, Signal s2)
+ get_tf_cost(Signal s1, Signal s2)
+ get_tf_costs()

MappedCompareResult

+ mappings

UnitPercentageAnalysisResult

+ compare_result : CompareResult
+ percentages

SignalPercentageAnalysisResult

+ graph
+ compare_result : CompareResult

SignalTransformationCost

+ total_cost
+ prop_tf_costs

SignalSimilarity

+ prop_similarities

Figure 5.5: Data model package structure [Keh15]

UnitInterface - Represents an interface of a software component. It contains necessary
information according to the PERSIST architecture and is also used for similarity
calculation.

Signal - Each UnitInterface usually contains a list of Signal each representing an
in or out port and all necessary information regarding corresponding port. An out
signal can send data to other interface and in signal is used to receive data. In the
context of FEV GmbH, there are five kind of Signal which are in, out, mp, cal and
fix. Each Signal has a property of type TypeDef representing the type of data
corresponding port can handle.

SignalSimilarity - It represents an undirected similarity between two Signal. It en-
capsulates the similarity values for each property of both signals.

SignalTransformationCost - The transformation cost from one Signal to another is
represented with this model. Since, transformation costs are direction dependent,
values represented with this data model is also direction dependent. Therefore,
transformation cost from signal s1 to signal s2 might be different if it is calculated
in other direction.

CompareResult - In section 4.1.4, the process of structural similarity calculation has
been described. For two interfaces I1 and I2, each signal from I1 is compared with
all the signals of I2 and the comparison results are stored with CompareResult.
Both directed and undirected similarities are stored. Undirected similarity values are
stored with SignalSimilarity and SignalTransformationCost represents
the directed similarity values.

39

MappedCompareResult - In the mapping step, as explained in section 4.1.4, a mapping
between two interfaces is calculated where one signal is mapped to only one signal
of another interface. Such a mapping is represented with MappedCompareResult.
It extends from the CompareResult.

UnitPercentageAnalysisResult - For each pair of Unit, this model stores the per-
centage of Signal which are equal, similar, weakly similar or different. The stored
similarity values are directed. Therefore, for two units u1 and u2, the similarity value
for u1 to u2 might be different from u2 to u1.

5.5.2 Interface import and similarity calculation

Figure 5.6 presents classes which are used by SimA for interface data import and structural
similarity calculation. They are explained below.

ExcelImporter

InterfaceImporter

+ load_interface(interface_src, typedef_src, enumdef_src)

UnitInterface

CD

(a) Interface data import

SignalComparer

+ compare_all_signals (units) : CompareResult

SignalAnalyser

+ create_signal_mapping (CompareResult)
+ analyse_units (MappedCompareResult)

CD

(b) Structural similarity calculation

Figure 5.6: Classes related to interface data import and similarity calculation [Keh15]

ExcelImporter - This class reads the excel files containing interface information. The
struct analysis package provides the interface InterfaceImporter with a
load interface function. This function is responsible for reading interface in-
formation. ExcelImporter provides implementation for reading excel file based
interface definition and returns an UnitInterface.

SignalComparer - The comparison between two or more signals are taken care of by
SignalComparer. It defines a metrics and uses it to calculate the similarity level
between two signals. As defined in section 4.1.4, all signals from multiple interfaces
are compared with each other and the similarity values are stored for future calcu-
lation. SignalComparer performs this comparison with compare all signals
method and returns a CompareResult.

SignalAnalyser - This class provides several functions to perform various analysis on
CompareResult. The structural similarity calculation algorithm (section 4.1.4)
computes a mapping between signals of two interfaces. This calculation is performed
with create signal mapping function which returns a MappedCompareResult.
The SignalAnalyser also computes the percentage of similar signals for a pair of
interfaces with the function analyse units.

40

5.5.3 Enhancements

During the development of SimA, several enhancement has been performed to the package
struct analysis. Some of these enhancements optimizes the performance and some
of them are bug fixes. As explained in section 5.1, classes which do not have a parent
class should explicitly extend from object. Certain model classes of struct analysis
package was written without a parent class and they have been changed to inherit from
object. This change makes it possible to take the advantage of various functions provided
by object class. For example, to use any object as a dictionary key, it should have
a hash function which returns a unique hash value for each different object. The
previous implementation of the Signal model provided a custom hashing function which
generated a hash value based on the attributes. Therefore, two different signal objects
having same attribute values will generate same hash value. Using them both in the same
dictionary as key can overwrite existing data which can result into wrong output. On
the other hand, Signal can inherit the hashing function from object which provides
a unique hash value regardless of the attribute values. This change not only follows the
standard python convention (sec. 5.1) but also solves bugs which are quite difficult to
track. Therefore, several model classes have been changed to inherit from the object.

Several enhancement has been performed on the ExcelImporter class. Firstly, it was
refactored to extract several reusable methods and they are called multiple times instead
of having same code at several places. Several long methods has also been eliminated
which are hard to read and debug. Several variables, having names which are similar to
python build-in modules or methods, has been changed to avoid name conflicts. The fix
sheet of the interface definition excel file had been skipped while reading the definitions.
These fix signals has been re-included into the interface definitions.

Error handling has also been improved. In certain circumstances, excel files can have
invalid data or the data might not be properly formatted. This can cause error in com-
putation if not handled properly. Proper handling of these situations has been provided
for cases where they were not being handled.

5.6 The test-based-validation-tool package

This package is responsible for calculating test case based semantical similarity. The
calculation process has been described in section 4.1.6. It takes a pair of test cases from
two different interfaces, converts them to two sets of I/O EFAs and calculates simulation
relation between related automatons.

The test-based-validation-tool package is developed in java. Therefore, it follows
a slightly different naming convention than the ones described in section 5.1. All aspects
of the package itself is not covered by the scope of this chapter. Things that are related
and used by SimA framework is discussed here.

5.6.1 Data models

The test-based-validation-tool converts the test cases to I/O EFAs. The data
model class ConstructionConfiguration defines the configurations necessary for cre-
ating these automatons. The similarity analysis is performed according to the configur-
ation specified by the class AnalysisConfiguration. It contains path to both test

41

files, type of the test cases, port mapping information etc. In the context of SimA, the
port mapping information is extracted from the structural similarity analysis and specifies
similar ports from both interfaces. The AnalysisConfiguration also contains two
ConstructionConfiguration each for the corresponding test file.

CD

AnalysisConfiguration

filePath1 : String
filePath2 : String
sourceType : Enum
metricType : Enum
portMapping : Map

ConstructionConfiguration

automatonType : Enum
fullySpecified : Boolean
simulated : Boolean
usingRanges : Boolean
interpolationMapping : Map
dependentInterpolation : Boolean
…

1 2
IMetricStatement

+ getStatements () : String [0..*]
+ addStatementPart (String)

MetricStatement

IComparisonResults

+ getResult ()
+ putResult ()

ComparisonResults

Figure 5.7: Data models

During the semantical analysis phase, the results are stored as a ComparisonResults.
It has getResult and putResult functions for getting and adding new results to the
object. After finishing the analysis phase, the list of ComparisonResult are converted
to MetricStatement. It is basically a list of String which is a readable representation
of the corresponding ComparisonResult.

5.6.2 Semantical analysis and evaluation

The TestDrivenCompatibilityAnalysis class extends from AAnalysis and per-
forms the semantical analysis. The AAnalysis class implements the analyze method
and defines the workflow for the semantical analysis as shown in the figure 5.8. First,
the automatons are created form the test files and are checked for validity. After that,
the comparison step is executed which is follow by the evaluation step. The simulation
relation between two automatons is evaluated during the comparison step. It generates
a list of IComparisonResult. This results are translated to IMetricStatement in
the evaluation step.

The AAnalysis defines the workflow from an abstract level with a template method
and TestDrivenCompatibilityAnalysis provides implementation for them. The
compare function returns a ComparisonResults object. In the evaluation phase,
CEGAREvaluator is used to evaluate the result and create readable strings represented
with MetricStatement. The AnalysisException is thrown if anything unexpected
occurs at any stage of the whole analysis process.

The TestDrivenCompatibilityAnalysis compares the test files as a whole. As a
result, the total analysis procedure is halted if an error occurs during analysing one port
and analysis for rest of the ports are not executed. Therefore, some potential matches can
not be found and the similarity information remains incomplete. To make the analysis
more robust, the TestDrivenCompatibilityAnalysisErrorAsStatement has been
developed. It extends from TestDrivenCompatibilityAnalysis and overrides cer-
tain methods so that the workflow can continue regardless of any error. The errors are
stored and later, during the evaluation step, added to MetricStatement. For this pur-
pose, a special evaluator CEGAREvaluatorWithProblemStatements is used. This

42

IAnalysis

+ analyze (IAnalysisConfiguration) : IMetricStatement [0..*]

AAnalysis

configuration : IAnalysisConfiguration

+ analyze (IAnalysisConfiguration) : IMetricStatement [0..*]
checkConfiguration ()
checkModels ()
compare ()
evaluate ()

TestdrivenCompatibilityAnalysis

comparePort ()
evaluateResult ()
chooseEvaluator ()

TestdrivenCompatibilityAnalysisErrorAsStatement

comparePort ()
evaluateResult ()
chooseEvaluator ()

CD

IEvaluator

+ evaluateResults (IComparisonResults)

AEvaluator

CEGAREvaluator

CEGAREvaluatorWithProblemStatements

function analyze {
this.checkConfiguration();
this.getModels();
this.checkModels();
this.compare();
this.evaluate();
return statements;

}

Figure 5.8: Classes related to semantical evaluation and calculation

enhancement provides SimA framework with all necessary insight of the semantical ana-
lysis while preserving the original workflow implementation.

The similarity statements generated by CEGAREvaluatorWithProblemStatements
are of format,

<automata name> simulates <number> % of <automata name>
And they can be later parsed to extract the similarity values for signal ports corresponding
to the mentioned automations.

5.7 The isddgf package

To make the results of analysed similarities available in an understandable and reader
friendly format, SimA generates various reports (concept in sec. 4.1.8). The isddgf
package, developed by [Kha16], provides Python api for generating javascript enabled
interactive HTML documents. With the help of this package, SimA generates HTML
reports to present the similarity results. Creating HTML table with sort and search
support, constructing nvd35 based charts, bootstrap6 based layout management are some
of the very convenient and frequently used features of isddgf package.

5.7.1 HTML components

The isddgf package has built-in support for generating various HTML elements. Each
of these elements can be used separately and some of them can be used as a container to
create compound element (e.g. div). Figure 5.9 presents a class diagram showing classes

5http://nvd3.org/
6http://getbootstrap.com/

43

each of which represents important HTML entities. Each of the classes representing HTML
elements extends from IComponent which contains very basic methods for HTML code
generation. BasicComponent is a subclass of IComponent and acts as a parent class
for container type HTML elements (e.g. Div). AbstractHtmlComponent is the parent
class for all standalone HTML elements (e.g. Hyperlink).

<<interface>>
IComponent

+ get_component_html ()

AbstractHtmlComponent

_html : string

+ create_component ()

Hyperlink

+ props: HyperlinkProperties

Image

+ props : ImagePropertiesBasicComponent

_objects_list
_attr

+ add_component (*components)
+ get_component_html ()

Div

Paragraph

Document

+ create_document (path)

BasicReport

BasicChart

DiscreteBarChart

+ props : DiscreteBarChartProperties

PieChart

+ props : PieChartProperties

MultiBarChart

+ props : MultiBarChartProperties

CD

Figure 5.9: isddgf HTML components

Containers - As explained before, a container extends from BasicComponent. Figure
5.9 shows two of such classes Div and Paragraph. A container’s objects list
attribute contains a list of HTML elements and the add component function is
used to add elements to this list. An element can be anything of type IComponent.
The attr attribute maintains a list of HTML attribute for the container.

Elements - Classes which represents a single and standalone HTML element extends from
AbstractHtmlComponent. It has functions to generate corresponding HTML
code. The child classes maintain a props attribute (e.g. HyperlinkProperties
for Hyperlink) which contains different HTML property values for the correspond-
ing element.

Charts - The BasicChart is another HTML component. Like other component objects,
it extends form AbstractHtmlComponent and works as base class for different
specific chart object. The class diagram in figure 5.9 shows three different chart
implementations - PieChart, MultiBarChart and DiscreteBarChart. The
section 4.1.8 explains how these charts can be used to represent related information.
Visual representation of these charts, in the context of SimA implementation, will
be presented later in chapter 7.

Document - The Document class represents a full HTML file by defining a skeleton
document. It provides functions to design an HTML document by inserting different

44

HTML elements to different part of the document. Finally, the document can be
written to a file using create document function. This class also takes care of
related resources (javascript, styling and images).

5.7.2 HTML table generation

AbstractTableModel

_table_props : TableConfiguration
_row_collection : TableRow [0..*]
_table_header : TableHeader

TableCell

TableRow TableHeaderTableConfiguration

<<interface>>
IComponent

+ get_component_html ()

AbstractHtmlComponent

+ create_component ()

Table

+ model : AbstractTableModel

CD

*

1

* 11

Figure 5.10: isddgf table and related data model

In the context of SimA, table generation is the most frequently used feature of isddgf
package. The class diagram in figure 5.10 shows the basic structure of Table and
AbstractTableModel class. The AbstractTableModel contains data and all ne-
cessary configuration information for generating an HTML table. The table header
attribute contains styling information and data for table header. AbstractTableModel
contains multiple TableRow and each of them has multiple TableCell. TableCell
contains the actual data which can be any kind of text or another HTML element (e.g.
hyperlink). The table props contains configuration information regarding sorting,
searching, pagination etc.

5.8 The similarity analysis package

This package contains the implementation of the whole SimA framework and was de-
veloped as a part of this thesis. SimA’s data models, interfaces and their implementations
are all contained in this package. This section explains all these parts and their purposes.
Initially, the data models are explained in detail and later different interfaces and their im-
plementations are discussed. The discussion regarding the implementations also explains
how previously discussed packages are utilized in the context of SimA.

5.8.1 SimA data models

Data models define the basic data structure of an application. They are developed to
imitate the real life scenario that they represent. Each model groups logically related
data and stores them. Data models also define how one model is related to another and

45

indirectly defines the data flow throughout the application. This section discusses the
different data models which were defined, developed and used during the implementation
of the SimA framework. Figure 5.11 presents the package structure of the data models
developed for the SimA framework.

Project Unit InterfaceSignalRepositoryItem

models enums

SignalType

RepositoryItemType

data

PD

SimilarityDegree

ExtrinsicSimilarity

UnitUsage

SignalStructuralSimilarity

SemanticalSimilarity OverallSimilarity

AttributeSimilarity

ExternalObjectWrapper

UnitStructuralSimilarity

GlobalUnit ProjectStatus ExternalSimilarityResultWrapper

SimilarityType

Figure 5.11: Data model package structure

5.8.1.1 Project data models

As already discussed in chapter 4, the purpose of the SimA framework is to find similar
software components from different projects. Therefore, data models representing project
and its related properties has to be defined. This section discusses the project model
and all the other models necessary to define the project structure. Relations among these
projects are also discussed here. The project structure is developed based on the PERSIST
(sec. 2.2) architecture. Figure 5.12 presents a class diagram showing the overview of the
project data models.

Project - The Project model is a part of data.models module. This model holds
data related to a project. Since, a project can have multiple software components,
each Project holds a list of Unit (explained later). The data source attribute
of the model holds information about the location of the project data which can
be any object. However, in the context of FEV GmbH, project information are
preserved with a Microsoft office excel file. Therefore, in current implementation it
is a path string pointing to the specific file.

Unit - A software component is represented with the Unit model that is a part of
data.models module. The project attribute of the Unit model points to the

46

Project

+ name : string
+ data_source : object
+ units : Unit [0..*]

⁞

+ has_unit(string)
+ get_unit(string)

Unit

+ name : string
+ interface : Interface
+ project : Project
+ unit_data_location : object
+ test_files : RepositoryItem [0..*]
+ model_info : RepositoryItem [0..*]

⁞

+ has_interface()

Interface

+ name : string
+ signals : Signal [0..*]
+ unit : Unit

⁞

+ get_signal_of_type(SignalType)

Signal

+ name : string
+ signal_type : SignalType
+ interface : Interface

⁞

RepositoryItem

+ path : string
+ item_name : string
+ local_path : string
+ item_type : RepositoryItemType

⁞

0..*

1 11

<<enumeration>>
SignalType

IN
OUT
CAL
MP
FIX

0..*

1

<<enumeration>>
RepositoryItemType

FILE
FOLDER

CD

0..*

Figure 5.12: Project data models

Project it belongs to. Therefore, the Project and Unit models has a one-to-
many relation. Unit also holds information regarding the available test specifica-
tions (test files), simulink models (model info) and interface (interface)
of the software component. All of these are discussed later.

Interface - The Interface model holds information regarding the interface of the
corresponding software component. An interface of a software component is a defined
entry point through which multiple software components can communicate. An
Interface has multiple different kind of ports for communicating called Signal
(explained later). The unit attribute of an Interface points to an Unit model
specifying the software component it belongs to.

Signal - Interfaces from different software components communicate through a well-
defined port which is represented with the Signal model. Section 4.1.4 presents
a detailed definition of a signal. The type of the Signal is specified with the
signal type attribute which can be one of the five as shown in figure 5.12.

RepositoryItem - The RepositoryItem model represents a remote file or folder.
In the context of FEV GmbH, it represents an item hosted in an SVN repository.
The item type attribute specifies if it is a file or folder. The path attribute is
the path to the remote item and the local path attribute holds the path to the
corresponding local item if it is locally available (e.g. checked out from SVN).

5.8.1.2 Similarity data models

As discussed in chapter 4, the SimA framework calculates similarity on extrinsic, structural
and semantical level. After calculating these similarities, the results along with related
information are stored with different data models. This section discusses each of these
similarity result data models. In figure 5.13, a class diagram is presented which shows
these similarity data models and the relation among them.

47

ExtrinsicSimilarity

+ similar_units : Unit [1..*]
+ unit_name : string

+ has_unit (Unit)

UnitStructuralSimilarity

+ unit1 : Unit
+ unit2 : Unit
+ extrinsic_similarity : ExtrinsicSimilarity
_unit_level_similarity : dictionary
_signal_level_similarity : dictionary

⁞

SignalStructuralSimilarity

+ signal1 : Signal
+ signal2 : Signal
+ average_similarity : float
_attribute_similarities : AttributeSimilarity [0..*]

⁞

AttributeSimilarity

+ attrb_name : string
+ value1 : object
+ value2 : object
+ similarity_degree : SimilarityDegree
+ similarity_ratio : float

SemanticalSimilarity

+ signal_a : Signal
+ signal_b : Signal
+ similarity : float
+ messages : string [0..*]
+ structural_similarity : UnitStructuralSimilarity

0..*

1

1..*

0..
*

CD

OverallSimilarity

+ extrinsic_similarities : ExtrinsicSimilarity [0..*]
+ structural_similarities : UnitStructuralSimilarity [0..*]
+ semantical_similarities : SemanticalSimilarity [0..*]
_unit_name_to_extrinsic : dictionary
_extrinsic_to_structural : dictionary
_structural_to_semantical : dictionary
_signal_pair_to_semantical : dictionary
_signal_to_semantical : dictionary
_unit_pair_to_structural : dictionary
_unit_to_structural : dictionary
_project_pair_to_structural : dictionary

+ get_extrinsic_similarity_for_unit (Unit)
+ get_structural_similarities_related_to_unit (Unit)
+ get_semantical_similarities_related_to_signal (Signal)

⁞

<<enumeration>>
SimilarityDegree

Equal
WeaklySimilar
Similar
Different
NoMapping

1

0..*

0..*

Figure 5.13: Data models for similarity results

ExtrinsicSimilarity - As defined in section 4.1.2, two or more Units are extrinsic-
ally similar when they have the same name. The similar units property of the
ExtrinsicSimilarity model holds an extrinsically similar list of Units. The
name property of the data model holds the name of these Units.

UnitStructuralSimilarity - This model holds structural similarity information for two
Units. As described in 4.1.4, the structural similarity basically refers to attrib-
ute based directed signal similarity. Therefore, UnitStructuralSimilarity
model contains directed Signal similarity information (e.g. from unit1 to unit2
and vice versa) for all similar pairs of Signals from both Units. And this
similarity information is stored as a dictionary represented by the attribute
signal level similarity. The unit level similarity attribute con-

tains directed numeric similarity value for corresponding Units. The attribute
extrinsic similarity holds the extrinsic similarity information from which cur-
rent structural similarity was calculated.

SignalStructuralSimilarity - Structural similarity between two Signals are rep-
resented with this model. The attribute similarities is a list contain-
ing attribute based similarity information for each attribute of both Signals.
average similarity is the mean value of all the attribute based similarity values.

AttributeSimilarity - It represents structural similarity of one specific attribute for a
pair of Signals. The name of the attribute is defined with attrb name. The
similarity ratio is the numeric similarity value where 0 means not similar and
1 represents absolutely equal attribute values.

SemanticalSimilarity - The semantical similarity is calculated between two OUT type
Signals. SemanticalSimilarity contains directed semantical similarity in-
formation from signal a to signal b. The similarity attribute is the numer-

48

ical percentage of the semantical similarity. An unsuccessful similarity calculation
is represented by None value for the similarity attribute and the error mes-
sage are stored in messages attribute. The structural similarity attribute
holds structural similarity information from which current semantical similarity was
calculated.

OverallSimilarity - This model maintains the relations among different similarities.
According to the workflow proposed in section 4.1, different kind of similarities are
calculated sequentially and results from one similarity calculation are used in the next
step. For example, Signal mapping found in the structural similarity calculation is
used for finding semantical similarity. Therefore, these two similarity results are re-
lated. OverallSimilarity keeps track of these relations. It also establishes rela-
tionship among different project models (sec. 5.8.1.1) and similarity models. For ex-
ample, the function get semantical similarities related to signal re-
turns all SemanticalSimilarity which is related to provided Signal.

5.8.1.3 External object encapsulation

The SimA framework calculates similarities between software components from differ-
ent level. From an implementation point of view, some of these similarity calculation is
provided by external frameworks. For example, the structural similarity is calculated with
the framework developed in [Keh15] and the semantical similarity calculation is provided
by [Thi15]. The implementation details regarding the similarity calculation is discussed in
section 5.8.3. In the context FEV GmbH, some of SimA’s data read/write operations are
based on the scripts provided by company itself. Therefore, SimA has to work with data
generated by different frameworks and scripts. At the same time, external frameworks
can only work with data models defined by themselves. Directly manipulating these data
makes SimA dependent on that specific code which is a direct violation of the requirement
specified in section 3.2.

ExternalObjectWrapper

_original_object : object

ExtrinsicSimilarity UnitStructuralSimilarity

SemanticalSimilarity
Project

Unit Interface

Signal

UnitUsage

GlobalUnit

CD

Figure 5.14: ExternalObjectWrapper inheritance.

For a seamless communication with external frameworks and keeping SimA’s internal data
manipulation consistent, ExternalObjectWrapper abstract model has been developed.
The original object attribute of this model holds information read or received from

49

the external frameworks. As shown in figure 5.14, ExternalObjectWrapper is exten-
ded by different data models. These data are read from or generated by different external
frameworks. The child models has their own attributes which are used for SimA’s internal
computation. The original object is used during communication with the external
frameworks.

5.8.1.4 Data models for reports

Section 4.1.8 discusses about different kind of reports the current implementation of SimA
framework can generate. Besides similarity analysis, SimA can performs other miscel-
laneous operations, for example global component list generation (sec. 4.2), which helps
producing more meaningful and information rich reports. This section discusses about the
data models which are generated by these operations and are illustrated in figure 5.15.

UnitUsage

_projects : Project [0..*]
_unit_usage : dictionary

+ get_unit_usage (unit_name)
+ get_associated_projects ()

ProjectStatus

+ project : Project
+ part_of_glob_units : Unit [0..*]
+ not_part_of_glob_units : Unit [0..*]
+ miss_external_id_units : Unit [0..*]
+ miss_functional_description_units : Unit [0..*]
+ miss_interface_units : Unit [0..*]
+ miss_simulink_model_units : Unit [0..*]
+ miss_test_cases_units : Unit [0..*]
+ fully_provided_units : Unit [0..*]

CD

Figure 5.15: Reporting specific models.

UnitUsage - This model holds information about different Projects which uses the
same Unit. The unit usage attribute is a dictionary that maps an Unit to a
list of Project which the Unit is part of. The access to this attribute is restricted
and information from it is available via the function get unit usage. It takes a
Unit’s name and return the Projects using it.

ProjectStatus - Different software components in various projects are often missing in-
formation. ProjectStatus represents the quality of a project in terms of inform-
ation availability by listing which Units are missing which information. For ex-
ample, the miss interface units attribute lists those Units which are missing
interface information. The fully provided units lists Units which contains
all necessary information. For the corresponding project, it also holds information
regarding which units are part of the global component list and which are not.

5.8.2 SimA data read and write

SimA reads different kind of data from various sources before performing similarity or other
computations. Computed results are sometimes exported as files. SimA implements some
of the read/write functionalities. Some of these functionalities are provided by external

50

frameworks and SimA directly uses them. SimA defines interfaces as abstract classes for
reading and writing data. Different implementations of these interfaces provide different
functionalities. The abstract classes not only specify a defined structure to read/write
data but also creates a layer of abstraction which hides the implementation details from
usage. This section discusses the data read/write interfaces and their implementations
which has been used in different stages of the SimA workflow.

5.8.2.1 Remote file reader

A remote file reader reads information about files or folders which are hosted in a remote
repository (e.g. SVN). In the context of FEV GmbH, information necessary for similarity
calculation are often not locally available and has to be checked out from remote official
SVN repositories before performing any further operation.

AbsRemoteRepositoryReader

+ download_path (remote_src, local_dest)
+ get_info (remote_source)
+ list_content (remote_source)
+ list_content_recursive (remote_source)
+ path_exists (remote_source)
+ file_type_exists (remote_path, file_extension)
+ find_matching_file (remote_path, regular_expression)

SvnRepoReader

CD

Figure 5.16: Remote file reader interface and implementation.

AbsRemoteRepositoryReader (fig. 5.16) defines an interface for performing readonly
operations on a remote file or folder. The interface provides various functions which can
perform different tasks. For example, download path downloads a remote folder to
a specified local path, path exists checks the availability of a remote file or folder,
find matching file searches for files having specified name pattern, list content
returns a list containing information about the contents of a remote folder and so on. Func-
tions returning file or folder information return them in the form of RepositoryItem
(sec. 5.8.1.1) object.

SvnRepoReader implements the AbsRemoteRepositoryReader interface and provides
previously mentioned functionalities for an SVN repository. For executing all SVN com-
mands it is dependent on the svn python library specified in section 5.2.

5.8.2.2 File readers

SimA defines generic interfaces for reading data regardless of source or format. Files which
are locally available or checked out from a remote repository are read with different file
readers. And these file readers are implemented based on defined data reader interfaces.
This section discusses about the data reader interfaces and their file based implementa-
tions.

51

Data reader interfaces - SimA defines two abstract classes namely AbsDataReader
and AbsProjectDataReader. These classes create a layer of abstraction for reading
data. AbsDataReader is designed to be the base class for all data reader classes. The
read data method reads the data and convert data method is used for data conversion
if necessary.

AbsDataReader

+ read_data (source, **kwargs)
+ convert_data (data, **kwargs)

AbsProjectDataReader

+ read_data_raw (source, **kwargs)
_update_additional_property (data, **kwargs)
_create_ext_object (**kwargs)

GlobalProjectExcelReader

_global_proj_reader : GlobalProjectReader

PatternBasedRemoteFileReader

_remote_data_reader : AbsRemoteRepositoryReader

_update_local_path (repo_url, file_infos)
_get_new_temp_path ()

CD

Figure 5.17: Data reader interfaces and implementations.

As the class diagram in figure 5.17 shows, the AbsProjectDataReader extends from
AbsDataReader and defines another abstraction for reading Project and its related at-
tributes. It provides an implementation for read data and defines three more functions.
The newly defined read data raw reads specific kind of data and returns it without
any change. Now, it might be the case that different properties of the already read data
are available at different sources. For example, in the context of FEV GmbH, an Unit
and it’s related Interface is defined separately. To take care of this kind of situations,
update additional property method is used which, based on the implementation,

reads and updates properties of read data. The function create ext object is used
for very special cases. Section 5.8.1.3 discuses about how data from external frameworks
are preserved in their original form and used when interacting with corresponding frame-
works. In certain cases when the external objects can not be preserved in this way, the
function create ext object creates a dummy external object based on the original
data. This way the communication with external frameworks are kept consistent. The im-
plementation for read data is a template method (sec. 2.8.3). It reads the raw data and,
based on the use case, performs conversion and/or additional property update. Finally, it
returns an object which is part of SimA data model (sec. 5.8.1).

Data reader implementations - Data reader interfaces, described in previous section,
are implemented by different classes where each class reads one particular kind of data.
These implementations are discussed in this section.

PatternBasedRemoteFileReader - This class searches files based on regular expres-
sion and retrieves information about those files from a remote repository. It extends

52

CDAbsProjectDataReader

+ read_data_raw (source, **kwargs)
_update_additional_property (data, **kwargs)
_create_ext_object (**kwargs)

ProjectConfigExcelReader

+ unit_reader : ExcelUnitReader
_project_reader : ProjectListConfigReader

ExcelUnitReader

_remote_filetype_reader : AbsRemoteRepositoryReader
_interface_reader : SvnInterfaceReader
_unit_reader : ComponentListExcelReader

_update_interface (units, project_data_location)
_update_model_and_test_fileinfo (units, project_data_location)

SvnInterfaceReader

_excel_importer : ExcelImporter
_svn_reader : SvnRepoReader

_checkout_and_get_path (repopath, filename)

SvnRepoReader

Figure 5.18: Project related data readers.

from AbsDataReader and uses any class of type AbsRemoteRepositoryReader
to retrieve information from remote repository. The read data function takes
the data source path and a list of file name patterns. It matches file names with
provided pattern and keeps track of the matched files. For each matched files
similarity analysis.models.RepositoryItem object is created. At this
point the matched files are downloaded to a cache directory and the local path
of those files are used to update the local path attribute of the corresponding
RepositoryItem. Finally, it returns a dictionary where keys are the pattern
strings and the values are list of RepositoryItem which matches the correspond-
ing pattern string.

ProjectConfigExcelReader - This class extends the AbsProjectDataReader and
returns primary information for different software projects. In the context of FEV
GmbH, these information are listed in an excel file. Each row contains information
like - name, project type, SVN repository location etc for one specific project. The
ProjectConfigExcelReader reads this file form the provided local path and
returns a list of similarity analysis.data.models.Project.

The ProjectListConfigReader class (sec. 5.4.2), which is provided by the
extrinsic similarity package, is used for reading this data. It reads this excel
file and returns a list of extrinsic similarity.models.Project. Each item
of this list is converted into similar analysis.data.models.Project object.
While converting, the original object is stored as an attribute of the converted object
(sec. 5.8.1.3) which is later used to communicate with the extrinsic similarity
package. At this point, for each project ExcelUnitReader is called which returns
a list of similarity analysis.data.models.Unit for the corresponding pro-
ject. This list is assigned to the project’s units attribute and finally, a list contain-
ing information about all the listed projects are returned.

53

ExcelUnitReader - It extends from AbsProjectDataReader and reads the software
component definitions from provided location. In the context of FEV GmbH, for
each project these definitions are stored in an excel file. Each row of the excel
file represents one software component and contains information like - name, com-
position levels, implementation location, interface definition information etc. The
extrinsic similarity package already implements the reading of this data with
ComponentListExcelReader class (sec. 5.4.2) and is used to read the actual
data. It returns a list of extrinsic similarity.models.Unit which is con-
verted to a list of similarity analysis.data.models.Unit. During the con-
version, the original objects are preserved as explained in section 5.8.1.3.

An Unit defines an interface and in ideal cases, contains one or more test cases and
simulink models. In the context of FEV GmbH, these data are stored in a project
specific SVN repository. At this point the ExcelUnitReader calls other classes
to get these data and updates corresponding attribute of the Unit object with
them. The SvnInterfaceReader is used to read interface definitions from the
SVN repository and the PatternBasedRemoteFileReader for getting inform-
ation about the test cases and simulink models. After updating related attributes
regarding these data, the list of Unit is returned.

SvnInterfaceReader - This class extends from AbsProjectDataReader and reads
interface files from remote SVN repository. In the context of FEV GmbH, interface
definitions are stored as an excel file. Ideally, each of these files has five sheets - in,
out, cal, mp and fix. The name of the sheet identifies the type of signals it lists. For
example, an in sheet contains all in signals and so on. These files are stored in the
SVN repository of the project it belongs to.

The SvnInterfaceReader checks out the interface file, reads it and returns a
similarity analysis.data.models.Interface object. The SVN related
operations are performed with SvnRepoReader (sec. 5.8.2.1). ExcelImporter
class provided by struct analysis package is used for reading the checked out in-
terface files. Returned struct analysis.model.units.UnitInterface ob-
ject is converted to similarity analysis.data.models.Interface. The
containing list of struct analysis.model.units.Signal are also converted
to a list of similarity analysis.data.models.Signal and assigned to the
signals attribute of the interface object. The original signal and interface objects
are preserved for further communication (sec. 5.8.1.3) with the struct analysis
package.

GlobalProjectExcelReader - The idea behind global component list generation is ex-
plained in the section 4.2. In the context of FEV GmbH, this list is preserved
in the form of an excel file. GlobalProjectExcelReader reads this excel file
and returns a list of similarity analysis.data.models.GlobalUnit (sec.
5.8.1.4). It extends AbsDataReader and uses the GlobalProjectReader class
(sec. 5.4.2), provided by extrinsic similarity package, for the data read func-
tionality. The data returned by GlobalProjectReader is converted to GlobalUnit
and returned.

Data exporters - SimA defines AbsExporter abstract class for exporting data to
some external destination. It is the base class for all data exporting implementations of

54

SimA framework. The export data function exports the provided data to the specified
destination.

AbsExporter

+ export_data (data, destination)

GlobalUnitListExporter

_exporter : GlobalProjectExporter

CD

Figure 5.19: Data exporters.

The GlobalUnitListExporter extends the AbsExporter and exports a global unit
list to an excel file. It takes a list of similarity analysis.data.models.Projects.
Each of these Project object has an original object (sec. 5.8.1.3) attribute which
is basically a extrinsic similarity.models.Project object. A list from all the
original object is created which is used to create a global unit list using the class
UnitEvaluator (sec. 5.4.2) provided by extrinsic similarity package. At this
point, the GlobalProjectExporter (sec. 5.4.2) class of the extrinsic similarity
package is used to export the global unit list to the destination excel file.

5.8.3 Similarity calculation

The SimA framework computes extrinsic, structural and semantical similarity among soft-
ware components from different projects (sec. 4.1). The extrinsic similarity (sec.
5.4), struct analysis (sec. 5.5) and test-based-validation-tool (sec. 5.6)
packages respectively provides functionality to calculate these similarities. The SimA
framework makes use of these functionalities provided by different packages and puts
them together (algorithm in sec. 4.1) to generate a OverallSimilarity which relates
the separately generated similarity results from all the three different levels.

The SimA framework interacts with these different packages with facades. A facade, as
described in section 2.8.4, is a class that receives services from different external entities
and exposes a simple unified interface to interact with them. SimA defines a facade ab-
stract class AbsSimilarityFacade which is the base class for all similarity calculation
classes (fig. 5.20). The find all similarities is a template function (design pattern
explained in sec. 2.8.3) which defines the workflow for similarity calculation.

Initially, the actual similarity is calculated with the find similarities impl which
is an abstract function and, much like the strategy pattern explained in 2.8.5, different
implementation determines the type of similarity to be calculated. This function takes a
list of objects to calculate similarity for, performs calculation for each pair from the list
and returns a list of ExternalSimilarityResultWrapper. This object encapsulates
the external similarity calculation result along with any other related information which
is necessary for converting the result to SimA’s internal similarity representations (related
data models explained in sec. 5.8.1.2). At this point, each of the similarity results are
converted with convert similarity result which is another abstract function and
the conversion algorithm is determined by the implementation. In the following sections
three different implementations of the AbsSimilarityFacade are explained.

55

AbsSimilarityFacade

_similarity_evaluator : object

+ find_all_similarities (objects)
+ find_similarities (object1, object2)
_find_similarities_impl (objects)
+ convert_similarity_result (result)

CD

ExtrinsicSimilarityFacade

_find_similarities_impl (objects)
+ convert_similarity_result (result)

StructuralSimilarityFacade

_find_similarities_impl (objects)
+ convert_similarity_result (result)

SemanticalSimilarityFacade

_find_similarities_impl (objects)
_parse_similarity_statements (statements)
_create_semantical_similarities ()
+ convert_similarity_result (result)

ExternalDataConverter

+ convert_extrinsic_similarity ()
+ convert_analysis_result ()
+ convert_structural_property_similarities ()
+ calculate_whole_similarity_ratio ()

UnitEvaluator

+ compare_multiple_projects (projects)

SignalComparer

+ compare_all_signals (interfaces)

SignalAnalyser

+ create_signal_mapping (compare_result)
+ analyse_units (mapped_result)

Figure 5.20: Similarity calculation facades.

5.8.3.1 ExtrinsicSimilarityFacade

According to the algorithm discussed in section 4.1.2, the extrinsic similarity is calculated
among software components from different projects. ExtrinsicSimilarityFacade is
the implementation of AbsSimilarityFacade which is responsible to calculate extrins-
ical similarity (fig. 5.20). Under the hood, the UnitEvaluator class which is a part of
the package extrinsic similarity is used to calculate the extrinsic similarity.

The ExtrinsicSimilarityFacade gets a list of Project and uses UnitEvaluator
to perform the extrinsic similarity. Since the class UnitEvaluator is part of the
extrinsic similarity package, it can only work with data models which are defined
in the corresponding package (sec. 5.4.1). In this particular case, the Project ob-
ject defined in extrinsic similarity package. And this object is preserved as the
original object attribute of SimA’s Project object (external object handling ex-

plained in sec. 5.8.1.3). The original object attribute was updated when the projects
were read (sec. 5.8.2.2). Now, a list is created out of all original object and then it
is passed to UnitEvaluator for extrinsic similarity calculation.

The function compare multiple projects (details in sec. 5.4.2) of UnitEvaluator
class takes a list of projects as parameter and finds units which are extrinsically sim-
ilar. It generates a SimilarityResult (sec. 5.4.1) and returns it. This similar-
ity result object is not part of the SimA data model. Therefore, it is passed to the
convert similarity result function of ExtrinsicSimilarityFacade which con-
verts it to a list of ExtrinsicSimilarity object.

The convert extrinsic similarity function of ExternalDataConverter class
is used to convert SimilarityResult. Each SimilarityResultEntry (sec. 5.4.1)

56

contained in SimilarityResult represents the usage of one unit in different projects.
The convert function processes only those SimilarityResultEntry which has multiple
usages and creates an ExtrinsicSimilarity object from it. And finally, a list of
ExtrinsicSimilarity is returned.

5.8.3.2 StructuralSimilarityFacade

The structural similarity calculation functionality is provided by the struct analysis
package. The StructuralSimilarityFacade, a subclass of AbsSimilarityFacade,
works as a facade over this package and uses it to calculate structural similarity. It re-
ceives a list of Unit, calculates structural similarity for each pair of units from the list
and, finally, a list of UnitStructuralSimilarity is returned which represents the
calculated similarity results.

The structural similarity is calculated based on the unit’s interface definition. This defin-
ition is represented with the Interface data model (sec. 5.8.1.1) and is contained in
interface attribute of the corresponding Unit. However, the struct analysis pack-
age can only work with its internal representation of interface definition. And this data is
contained in the original object (sec. 5.8.1.3) attribute of the Interface object.
Therefore, a list out of the original object attribute of all Interface objects is
created and used for further calculation.

As discussed in 4.1.4, the structural similarity calculation works in several steps. In the
first step, all signals from both interfaces are matched using the compare all signals
function of SignalComparer class (sec. 5.5.2). It returns a CompareResult which
contains a similarity value for all possible pair of signals from both interfaces. At this point,
the result is analysed to create a signal mapping using the create signal mapping
function of SignalAnalyser class which returns a MappedCompareResult. This
result lists the similar signals from both interfaces, their directed overall similarity value
and directed similarity value for each attributes. The overall similarity between units
themselves are calculated with the analyse units function of SignalAnalyser class.
It returns the percentage of similar or non-similar signals between both units and an
overall percentage is calculated based on it. At this point, the MappedCompareResult
and overall unit similarity percentages are sent to the convert similarity result
function which returns a UnitStructuralSimilarity object for each pair of Unit.

The convert analysis result function of ExternalDataConverter class is used
to convert the structural analysis results. First, a UnitStructuralSimilarity ob-
ject is created to represent the similarity between two Unit and the overall unit based
similarity percentage is added to it. At this point, a SignalStructuralSimilarity
is created for each similar pair of signals which represents the similarity between them.
Each SignalStructuralSimilarity contains multiple AttributeSimilarity ob-
jects which represents the similarity of the attributes for corresponding signal pair. This
AttributeSimilarity objects are created based on the MappedCompareResult.
Finally, the UnitStructuralSimilarity object is returned after all the signal and
attribute similarities have been converted and added.

57

5.8.3.3 SemanticalSimilarityFacade

The semantical similarity is calculated with the test-based-validation-tool pack-
age. The SemanticalSimilarityFacade extends from AbsSimilarityFacade and
works as a facade (sec. 2.8.4) for the mentioned package. As explained in section 5.6,
this package is developed in java and section 4.1.6 explains the semantical similarity
calculation procedure. Therefore, a direct communication from python is not possible.
Another package validation tool proxy has been developed in java which receives
data from python as a json string, converts it to appropriate java object and calls the
test-based-validation-tool with them. The results are again converted to json
string and returned to python interface. In figure 5.21, the classes in the dotted box belong
to the validation tool proxy package. It shows how the communication between
SemanticalSimilarityFacade and test-based-validation-tool package is
maintained.

GenericValidationToolGateway

+ main (String [])

CEGARComparer

+ perform_comparison_both_way (cte1, cte2, signal_mapping)
parseMapJson (String)
getExceptionMessageChain (Throwable)
getStatementString (IMetricStatement [])

TestdrivenCompatibilityAnalysisErrorAsStatement

+ analyze (AnalysisConfiguration)

CD

SemanticalSimilarityFacade

Figure 5.21: The validation tool proxy package

An executable jar, including all dependencies, is created from validation tool proxy
to execute it. As shown in the figure 5.21, the GenericValidaitonToolGateway
contains a main method and it is the entry point of the created jar. When the jar is
executed, this main method is called first. Informations like path to the test files, sig-
nal mapping etc are provided as command line argument while executing the jar. The
main method checks if appropriate number of arguments have been provided and calls
perform calculation both way of CEGARComparer class with all the received para-
meters. At this point, the TestDrivenCompatibilityAnalysisErrorAsStatement
(sec. 5.6) is called for analysing the semantical similarity. It performs necessary compu-
tations and returns a list of IMetricStatement (sec. 5.6). This statement is converted
to list of string and returned. All codes inCEGARComparer class is carefully monitored
for exceptions. In case of any thrown exception, it is caught, messages are extracted and
added to the result list of string.

Now, the main method receives a list of string which contains all necessary informa-
tion regarding the executed semantical analysis. This list is converted to json string

58

and returned to SemanticalSimilarityFacade. The results are converted with the
convert similarity result function which parses them and extracts semantical sim-
ilarity percentage for matched pair of signals. Signal pairs having no similarity informa-
tion available are considered to have None similarity. A SemanticalSimilarity (sec.
5.8.1.2) is created for each mapped signal pair with found similarity information and any
available error messages. Finally, a list of SemanticalSimilarity is returned.

5.8.4 Report generation

SimA generates viewer friendly reports to present the analysed similarity information. In
the section 4.1.8, the concept behind generation of reports and their format has been
discussed. Based on this concept the report generation has been implemented.

The reports are generated as HTML documents which is highly portable, capable to gen-
erate interactive document and flexible. The isddgf package (sec. 5.7) has been chosen
for generating these reports which provides python api for HTML document generation.

5.8.4.1 Extending isddgf

Certain part of the isddgf package has been extended by SimA to match its necessity
and easier implementation. Two classes in particular has been extended as shown in figure
5.22. They are BasicReport and AbstractTableModel (more details about them in
sec. 5.7).

MultiComponentReport

_components
_page_heading

+ create_header_part ()
+ create_main_part ()

BasicReport

TableModel

_table_rows
_enable_table_filtering
_enable_column_sorting
_enable_pagination

+ add_row ()
+ add_multiple_rows ()
+ provide_table_rows ()
_set_table_properties ()

AbstractTableModel

_set_table_properties ()
+ add_row ()
+ provide_table_rows ()

CDDocument

+ create_header_part ()
+ create_main_part ()
+ create_document ()

<<interface>>

Icomponent

+ get_component_html

TableRow

*
*

Figure 5.22: Extended classes from isddgf

The MultiComponentReport extends BasicReport and provides a base layout for all
reports generated by SimA. It holds a list of IComponent and the create main part
function puts these components into the document. The components are placed ver-
tically one after another in the same sequence as they are in the list. The function
create header part creates the top part of the HTML document with the FEV and
software engineering chair’s7 logo.

7www.se-rwth.de

59

The TableModel extends from AbstractTableModel and defines a generic configura-
tion for all tables. It holds a list of TableRow and the add multiple rows function is
added to the class for adding multiple rows easily. The TableModel class holds boolean
values for enabling or disabling sorting, filtering and pagination feature for the corres-
ponding instance.

5.8.4.2 Report generation abstraction

SimA defines AbsReportGenerator abstract class which is the base class for all classes
that generate reports. The figure 5.23 shows the functions provided by this class and
other classes extending it. The generate report is a template function (design pattern
explained in sec. 2.8.3) defining the workflow for report generation from an abstract level.
First, it processes the data and then generates the reports based on the processed data.
The functionalities regarding the processing of data and report generation is defined by
the implementations.

AbsReportGenerator

_report_destination

+ generate_report ()
_generate_report_impl ()
_prepare_data ()

CD

ProjectStatusReport

UnitListReport

UnitUsageHtmlReport

UnitSimilarityReport

SignalStructuralSimilarityOverviewReport

SignalAttributeSimilarityReport

def generate_report():
 processed_data = self._prepare_data(data)
 self._generate_report_impl(processed_data)
 return self._report_destination

Figure 5.23: Report generation base and child classes.

5.8.4.3 Report generation implementations

In section 4.1.8, the concept behind generation of two different kind of reports have been
discussed and the implementation follows this concept. The ProjectStatusReport
class generates a status report for different projects which is explained in section 4.1.8.1.
The report presenting similarity results, discussed in section 4.1.8.2, is generated by
UnitUsageHtmlReport class.

ProjectStatusReport receives a list of ProjectStatus (data model discusses in sec.
5.8.1.4) and creates HTML table report based on them. In the ProjectStatus object
units of a project are grouped into different lists based on certain criteria. For example,
units which are part of global component list are put into the part of glob units list.
During the report generation a row is created for each ProjectStatus object. Each
cell of the row shows the count and percentage of units for a particular criteria. Each of
these rows also contains a hyperlink to a unit list table which lists the units satisfying the

60

corresponding criteria. The UnitListReport is used to create this unit list table. It
returns the path where the report was created and this path is used to create the hyperlink.

ProjectStatusReport

_generate_report_impl ()
_prepare_data (project_statuses)
_create_unitlist_report (units)

UnitListReport

_generate_report_impl ()
_prepare_data (units)

UnitUsageHtmlReport

_generate_report_impl ()
_prepare_data ()
_create_extrinsic_pie_bar_chart ()
__create_structural_similarity_and_get_link ()
_create_signal_attribute_report_and_get_link ()
_get_usedin_cells ()

UnitSimilarityReport

_generate_report_impl ()
_prepare_data ()
_create_unit_similarity_bar_chart ()
__create_structural_signal_report ()

SignalStructuralSimilarityOverviewReport

_generate_report_impl ()
_prepare_data ()
__create_attribute_report ()
__create_comparison_table ()

SignalAttributeSimilarityReport

_generate_report_impl ()
_prepare_data ()
__get_attribute_similarity_cells ()

*

*

*

*

CD

Figure 5.24: Classes generating reports and their dependencies.

The UnitUsageHtmlReport generates an overview similarity report which is explained
in section 4.1.8.2. It receives an UnitUsage and OverallSimilarity object to gen-
erate the report. The parts of the table holding information about the units and project
usage is created based on the data contained in UnitUsage. The extrinsic, structural
and semantical similarity information in the table is created based on the data contained
in OverallSimilarity object.

As explained in section 4.1.8.2, the extrinsic similarity column also holds hyperlink to
a structural similarity overview report for the corresponding extrinsically similar units.
This report is created with UnitSimilarityReport class. It receives the corresponding
ExtrinsicSimilarity object and the OverallSimilarity object to generate this
report. A path to the generated report is returned which is used to create the hyperlink.

The structural similarity report generated by UnitSimilarityReport holds a hyper-
link to the signal based structural similarity report which is generated with the class
SignalStructuralSimilarityOverviewReport. It creates a separate table for
each type of signals (structure in fig. 4.8) and the similarity information in the report is
generated based on corresponding UnitStructuralSimilarity object. For each pair
of similar signals links are created to attribute based structural similarity report. These
attribute similarity reports are created with SignalAttributeSimilarityReport
class. The AttributeSimilarity list contained in corresponding SignalSimilarity
is used to create this report. The OverallSimilarity object is used to find any asso-
ciated semantical similarity information.

61

5.8.5 SimA workflow controls

Similarity calculation and report generation are two of the main activity of the SimA
framework. Each of these activities consists of a very defined set of steps which has
to be performed sequentially. To ensure this sequential execution for current or future
implementation, SimA defines two workflow control abstract classes (fig. 5.25). These
classes defines the workflow with a template method (sec. 2.8.3) and rest of their behaviour
is abstracted. Here both of them and their implementation in current context has been
discussed.

AbsSimilarityCalculationWorkflow

_extrinsic_similarity_facade
_structural_similarity_facade
_semantical_similarity_facade

+ calculate_all_similarities ()
+ calculate_extrinsic_similarity ()
+ calculate_structural_similarity ()
+ calculate_semantical_similarity ()
_prepare_for_structural_similarity ()
_prepare_for_semantical_similarity ()

AbsSimAWorkflowExecutor

+ run_all ()
+ read_projects ()
+ calculate_similarities ()
+ calculate_project_status ()
+ read_global_unit_list ()
+ export_global_unit_list ()
+ calculate_unit_usage ()
+ generate_unit_usage_report ()
+ generate_project_status_report ()
+ cleanup ()

DefaultSimilarityCalculationWorkflow

ProjectRunner

_object_factory

_create_empty_cache_dir ()
_remove_non_empty_directory ()

CD

DefaultObjectFactory

ExtrinsicSimilarityFacade

StructuralSimilarityFacade

SemanticalSimilarityFacade

Figure 5.25: Workflow controller classes.

Similarity calculation - The abstract class AbsSimilarityCalculationWorkflow
defines this workflow. It has the calculate all similarities template func-
tion which controls the sequential execution of necessary steps from an abstract
level. The constructor function takes three arguments and each of them are different
implementations of the AbsSimilarityFacade.

The DefaultSimilarityCalculationWorkflow class provides concrete defin-
itions for these abstract steps in the context of current SimA implementation. This
class holds different instances of similarity calculation facades (described in sec.
5.8.3) and uses them for similarity calculation. The workflow receives a list of
Project and using ExtrinsicSimilarityFacade performs extrinsical simil-
arity analysis among them. StructuralSimilarityFacade is used to calcu-
late structural similarity among the extrinsically similar units found in the previous
step. In the next step SemanticalSimilarityFacade is used to calculate the
semantical similarity. The signal mapping found in structural similarity calculation
step is used here. Each calculation step is followed by a preparation step which
provides window for any kind of change that might be necessary for the next step.

62

Finally, an OverallSimilarity result is created based on the results from all
three similarity analysis steps. During the creation of this object, the correlation
among different similarity results are calculated and preserved which is later used to
understand how one similarity step lead to the next one.

Full workflow and report generation - The AbsSimAWorkflowExecutor controls
the whole workflow starting from project related data read to report generation. It
defines abstract methods for each of the steps. ProjectRunner extends from it
and provides the implementation in the context of SimA. ProjectRunner has a
constructor function that takes an AbsObjectFactory object as parameter and
later uses it to get all necessary object dependencies.

The run all function define and executes the whole workflow. Current implement-
ation closely follows the workflow showed in figure 4.2 and discussed in section 4.1.
First, it reads all project related data with the read projects function. The
following steps include similarity calculation and various report generation. The
similarity calculation step basically executes the similarity calculation workflow dis-
cussed earlier. At this point, the global unit list is calculated and exported as an
excel file. Finally, a cleanup step is executed with removes any temporary data (e.g.
SVN cache) that has been generated during the workflow executing.

5.8.6 SimA object factory

The creation of various objects is abstracted with the AbsObjectFactory class. It
provides methods for creating and getting different kind of objects. This technique is
inspired by the abstract factory design pattern (sec. 2.8.2).

AbsObjectFactory

+ get_excel_project_reader ()
+ get_excel_unit_reader ()
+ get_excel_interface_reader ()
+ get_similarity_calculator ()
+ get_remote_file_info_reader ()
+ get_svn_repository_reader ()
+ get_global_unit_reader ()
+ get_unit_usage_generator ()
+ get_unit_usage_report_generator ()
+ get_project_status_report_generator ()
+ get_global_unit_list_exporter ()
+ get_project_status_evaluator ()

CD

DefaultObjectFactory

ProjectConfigExcelReader

ExcelUnitReader

SvnInterfaceReader

PatternBasedRemoteFileReader

SvnRepoReader

GlobalProjectExcelReader

GlobalUnitListExporter

DefaultUnitUsageGenerator

DefaultProjectStatusEvaluator

DefaultSimilarityCalculationWorkflow

ProjectConfigExcelReader

UnitUsageHtmlReport

ProjectStatusReport

ExtrinsicSimilarityFacade

StructuralSimilarityFacadeSemanticalSimilarityFacade

Figure 5.26: Object factory implementation.

DefaultObjectFactory extends from AbsObjectFactory and provides object cre-
ation service in the context of current SimA implementation. As SimA highly relies on

63

dependency injection (sec. 2.8.1) pattern, various classes resolves dependency with their
constructor function. DefaultObjectFactory creates these dependency objects and
injects them to corresponding dependent classes in order to instantiate them. The con-
structor function of this factory class has a long list of parameters which are used to in-
stantiate classes that need external parameter. The class diagram in the figure 5.26 shows
different methods provided by the factory class and its dependency to various classes.

5.9 The similarity client package

As explained before, the SimA framework was developed in the context of FEV GmbH.
After developing the framework, it was added to the company’s nightly build chain. As
a result, new reports are generated with each nightly build providing updated reports
based on the latest data from SVN repository. The similarity client package works
as an entry point for executing the whole workflow stating from reading data to report
generation.

This package contains only two modules - Main and constants. The constants mod-
ule holds various static values which are specific for FEV and necessary to create different
objects. These values also include path to other packages (e.g. extrinsic similarity)
upon which the SimA implementation is dependent.

The Main module starts the whole workflow when it is executed as a python script. It
receives two command line arguments - the local path to the PERSIST folder and path
to the directory where generated reports will be saved. In the context of FEV GmbH,
PERSIST is the name of an SVN repository which holds files and scripts necessary for
SimA. Some of these information include the project list excel file, unit list for each
individual project etc.

Once Main is executed, it gets dependent package paths from the constants module and
adds them to the python path so that modules from other packages can be imported and
used. Then, it instantiates DefaultObjectFactory. Constructor parameters needed
to instantiate DefaultObjectFactory are taken from constants. Now, this object
is used to instantiate ProjectRunner and, finally, call the run all method to execute
the whole workflow.

64

Chapter 6

Tutorial

The SimA framework exposes different interfaces for performing various tasks. It also
provides implementation for those interfaces which have been implemented in the context
of FEV GmbH. Chapter 5, discusses about these interfaces and implementations. This ar-
chitecture makes the framework flexible and decoupled enough so that different component
of the it can be switched with a similar one.

This chapter discusses how different part of the framework can be extended, changed or
even replaced without affecting any other part. Executing current workflow implementa-
tion, installing dependencies are also in the scope of this chapter.

6.1 Resolve dependencies

As already discussed in chapter 5, the SimA framework is developed in Python 2.7. There-
fore, it is the fist requirement that has to be resolved to run the framework. The Python
2.7 installer is available form the official website1. It must be downloaded and installed.

In the context of FEV GmbH, the company provides Matlab scripts to read certain kind
of data (discussed in section 5.4.2). Current implementation of SimA has been tested
with Matlab R2012b 32bit. Therefore, it has to be installed as well. Matlab is run as an
automation server which has to be activated with the command shown in listing 6.1.

1 matlab -regserver

Listing 6.1: Activate matlab automation server.

A package dependency of SimA is test-based-validation-tool (details in sec. 5.3)
which is developed in Java. Therefore, it has to be installed for running the semantical
similarity calculation. Current implementation has been tested with Java 1.7. The cor-
responding installer is available from the official website2.

The SvnInterfaceReader explained in section 5.8.2.2, checks out interface definition
files from SVN repository of FEV. The svn python library is used for this purpose. But,

1https://www.python.org/downloads/
2http://www.oracle.com/technetwork/java/javase/overview/index.html

65

it is just a wrapper and SVN has to be installed in the system for this library to work
properly. The graphical SVN tool TortoiseSVN is available at the official website3.

The section 5.3 illustrates the packages and libraries the current implementation of SimA
framework is dependent on. To be able to successfully run SimA, these dependencies has
to be resolved. Packages discussed in section 5.3 are already bundles with the framework.
Some packages implemented in other language (e.g. test-based-validation-tool)
has to be properly treated (e.g. create jar) to make them executable. And, of course, dif-
ferent library dependencies has to be installed with related package manager (e.g. maven).

6.1.1 Installing Python dependencies

Python dependencies for current implementation of SimA are listed in section 5.2. These
dependencies are installed with the python package manager pip (version 8.1.2)4. But,
first pip itself has to be installed into the existing Python installation. The installation
script get-pip.py is available from the official website5. Running it (listing 6.2) will
install pip into the current python installation.

1 python get-pip.py

Listing 6.2: Install pip with get-pip.py.

The dependencies.req file, which can be found under the codes directory of this
thesis’s SVN repository, lists the python library dependencies in a format readable by pip.
They can be installed simply by running the command shown in 6.3. This not only installs
the listed libraries, but also their dependencies.

1 pip install -r dependencies.req

Listing 6.3: Install Python library dependencies.

6.1.2 Create Jar for test-based-validation-tool

Unlike SimA and other packages, the test-based-validation-tool is developed
in Java. And as described in section 5.6, the communication between SimA and this
package is mediated by another Java package validation tool proxy which works as
a data conversion layer. However, to execute these projects they have to be compiled into
executable file, particularly jar in this case. The export jar functionality of Eclipse6 was
used for this purpose.

The test-based-validation-tool defines all its dependencies in pom.xml file which
is the standard practice for maven projects. These dependencies has to be installed us-
ing maven. The validation tool proxy is an Eclipse project which identifies the
test-based-validation-tool as a build dependency. At this point, the jar file
created with Eclipse bundles all the dependencies together creating one single executable
file. In the figure 6.1, the Eclipse dialog for exporting jar has been shown. One important

3https://tortoisesvn.net/downloads.html
4https://pip.pypa.io/en/stable/
5https://pip.pypa.io/en/stable/installing/#installing-with-get-pip-py
6http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/mars2

66

Figure 6.1: Export executable jar with Eclipse.

point should be noted that the GenericValidationToolProxy containing the main
method (sec. 5.6) is chosen as the entry point. Therefore, this main method is executed
when the jar is run.

This jar file is created at validation tool proxy/out jar directory which contains
necessary SMT-solver7 executables used for semantical similarity calculation.

6.1.3 Checkout FEV’s PERSIST repository

The current implementation of SimA is based on the data provided by FEV GmbH.
Certain scripts from the FEV toolchain are also used by the framework. Necessary data
and scripts for running SimA are available in the FEV’s PERSIST SVN repository. This
repository has to be checked out and locally available.

6.2 Execute the full workflow

Once the dependencies are resolved, the whole SimA workflow (described in sec. 5.8.5)
can be executed. At this point, running the Main.py script of the similarity client

7http://smtlib.cs.uiowa.edu/

67

package with necessary argument, as shown in listing 6.4, will execute the whole workflow.

1 python Main.py <path_to_persist> <report_generation_directory>

Listing 6.4: Execute SimA workflow.

The script receives two command line arguments. The first argument specifies path to
the directory where the PERSIST SVN repository is checked out. And second argument
specifies the path where the HTML reports will be generated.

6.3 Extend SimA

To perform various tasks SimA exposes interfaces and provides implementations to them.
The framework is designed in a way so that one or more of the provided implementations
can be switched with a similar implementation. This section discusses about how SimA
can be extended by defining new implementation for various interfaces and how these
implementations can be plugged into the system. The discussion is done based on examples
and demo code samples.

Extend data reader - AbsDataReader and AbsProjectDataReader are two data
reader interfaces exposed by SimA (sec. 5.8.2.2). As an example for adopting the imple-
mentation in a context other than FEV, a different scenario can be imagined. Lets suppose,
instead of checking out interface definitions from SVN for reading, they are locally avail-
able. And they are stored in a different file format for which there is already a reader
available. Also a data converter has already been written which converts the read interface
data to Interface object.

For including this functionality into SimA, a new class LocalSvnInterfaceReader can
be defined which is shown in listing 6.5. One important thing should be noted that, the
conversion function preserves the external data with the original object attribute.
This data can be later used to communicate with the corresponding external package or
framework (more explanation in sec. 5.8.1.3).

1 class LocalSvnInterfaceReader(AbsProjectDataReader):
2

3 def read_data_raw(self, file_path, **kwargs):
4 return self.interface_reader.read_interface(file_path)
5

6 def convert_data(self, data, **kwargs):
7 interface = self.converter.convert_interface_data(data)
8 interface._original_object = data
9 return interface

10

11 def _update_additional_property(self, data, **kwargs):
12 pass

Listing 6.5: Interface definition reader implementation.

Now, this interface data reader can be used instead of the default SvnInterfaceReader.
Just overriding the factory function which creates interface reader to return an object of
LocalSvnInterfaceReader is sufficient and no other change is required.

68

Extend similarity calculator - The AbsSimilarityFacade is the exposed interface
for any similarity calculation. To continue with the scenario constructed in the previous
section, lets suppose, a new package for calculating structural similarity is available and
it has to be integrated into the current system.

1 class AlternateStructuralComparisonFacade(AbsSimilarityFacade):
2

3 def _find_similarities_impl(self, objects, **kwargs):
4 orig_objects = [obj._original_object for obj in objects]
5 results = self._similarity_evaluator.

analyse_structural_similarity(orig_objects)
6 return [ExternalSimilarityResultWrapper(res)
7 for res in results]
8

9 def convert_similarity_result(self, similarity_obj, **kwargs):
10 return self.converter.convert_structural_result(

similarity_obj)

Listing 6.6: Define a new structural similarity facade.

A new similarity calculation facade, like the one shown in listing 6.6, can be defined which
calculates and converts the results using the mentioned similarity calculation package. The
external object, preserved during reading interfaces with original object attribute,
has been used to communicate with the corresponding package. Finally, all the results are
converted to UnitStructuralSimilarity and returned.

Adapt object factory - In previous two sections a new data reader and structural
comparison facade has been defined. The next task is to use them instead of the ones
that are already provided by SimA. The recommended way to do that is to override the
DefaultObjectFactory.

1 class ModifiedObjectFactory(DefaultObjectFactory):
2

3 def get_excel_interface_reader(self, *args):
4 return LocalSvnInterfaceReader()
5

6 def get_similarity_calculator(self):
7 return DefaultSimilarityCalculationWorkflow(
8 ExtrinsicSimilarityFacade(),
9 AlternateStructuralComparisonFacade(),

10 SemanticalComparisonFacade(self.
test_based_similarity_jar_location))

Listing 6.7: Override default factory implementation.

As explained in section 5.8.6, the factory class provide methods for creating objects of
different kind and the DefaultObjectFactory returns all default implementations.
Since, only two types of new class has been defines, overriding the corresponding methods
from DefaultObjectFactory is sufficient. An example is presented in listing 6.7 which
shows the overriding of necessary methods.

69

70

Chapter 7

Evaluation

The primary goal of SimA is to support the APLE process by establishing a SPL and
providing useful information to maintain it. To achieve this goal, SimA performs similarity
analysis based on the data read from various project sources and generates reports from
the results. These generated reports contains not only the similarity results but also
information about different projects. The framework has been developed and various
reports were generated in the context of FEV GmbH. In this chapter different steps leading
to report generation are evaluated based on the corresponding reports.

7.1 Access Data

The SimA framework provides implementation to read data from different sources in the
context of FEV GmbH. These information is later used for similarity calculation and report
generation. Therefore, reading data and interpreting them correctly is one of the initial
but most important steps.

Figure 7.1: Project status report. (For maintaining a readable size the image is trimmed
at the grayed out part. Full report is in appendix A.1)

71

The project data is read by different classes (sec. 5.8.2) and stored under the Project
object as property or nested properties. The project status report (sec. 5.8.4) presents
these imported data as an HTML table. Figure 7.1, shows part of a project status report
table which was generated in the context of FEV GmbH. It shows number of software
components for each project and information related to them like how many of them are
part of the global unit list. For example, no component from the project xDct is part of
the global unit list and 11 of them are missing simulink models.

Figure 7.2: Units missing simulink models from project xDct. (For maintaining a readable
size the image is trimmed at the grayed out part. Full report is in appendix A.2)

The texts, that presents information about the components, are also link to other reports
which shows more details about the corresponding software components. For example,
the project xDct has 11 units which do not have any simulink model. Further information
about these units are presented with another report which is reachable by clicking on
the corresponding text of the project status table. Figure 7.2 shows the unit list. This
type of table has been used in multiple cases for presenting a list of units (e.g. show
units which are part of global unit list). It shows not only basic information about the
units but also the number of available interface definition, simulink model and test cases
of the corresponding unit. For example, the boxed entry in figure 7.2 represents an unit
which has 1 interface definition and 3 test cases available. These texts are hyperlinks to
corresponding file or folder in the SVN repository.

7.2 Similarity calculation

The project data read from various sources are used for finding similar software compon-
ents. As explained in section 4.1, the similarity calculation process is divided into three
consecutive stages - extrinsic (sec. 4.1.2), structural (sec. 4.1.4) and semantical (sec.
4.1.6). Each similarity calculation step is dependent on project data and results from
previous similarity calculation steps.

72

The similarity calculation results are used to generate reports which are connected with
hyperlinks. The reports are generated hierarchically. Starting from an overview report,
each level presents more and more similarity details. At the beginning of the similarity

Figure 7.3: Charts showing extrinsic similarity outline.

overview report, there is a bar chart and a pie chart showing an outline of the extrinsic
similarity results. An example is show in figure 7.3 which was generated in the context
of FEV GmbH. The bar chart plots extrinsic similarity count in the X axis against cor-
responding number of units in the Y axis. According to this graph, 717 units has no
corresponding extrinsically similar component and they are the only ones of their kind.
The second bar represents that 233 units has one extrinsically matching component from
other project and the 2 in the X axis means there are 2 units for each particular kind.

There is a table just below the chats which contains every unique units from all projects,
their similarity overview and usage information among different projects. Figure 7.4 shows
part of the overview report which contains similarity information. The sub-figure 7.4a
presents extrinsic and structural overview part. The extrinsic similarity column shows
how many extrinsically similar units are available for the corresponding unit. In other
words, how many projects are using this particular unit. For example, in figure 7.4a the
boxed entry shows that the unit psr PmpSpdRestrnt has been used by three different
projects. The boxed entry in figure 7.4b shows part of the report that shows which projects
are using this specific unit.

The next three columns in figure 7.4a present maximum, average and minimum structural
similarity information. As explained in section 4.1.4, at the fundamental level structural
similarity is calculated among signals from different units. Therefore, the maximum and
minimum structural similarity are basically structural similarity value of two signals where
the corresponding units of them are extrinsically similar. The average column holds the
mean of all signal based structural similarity values. For example, in figure 7.4a the boxed
entry shows that the corresponding units from different projects has at least one signal
pair with 100% structural similarity.

Figure 7.5, shows the maximum, average and minimum semantical similarity values for the

73

(a) Extrinsic and structural similarity overview.

(b) Unit usages among different projects.

Figure 7.4: Extrinsic and structural part of the whole overview report. (The whole image
including skipped grayed out parts is in appendix A.3).

corresponding unit. In this figure, the unit related columns from figure 7.4a are repeated
for better understandability. Semantical similarity is calculated between outgoing signals
from different units. Therefore, like the structural similarity columns, the semantical sim-
ilarity values presented in the table are also based on signal’s semantical similarity. For ex-
ample, the marked box in figure 7.5 shows that the unit with name psr PmpSpdRestrnt
from different projects has signals with maximum semantical similarity of 100%.

The overview similarity report is linked to reports that shows more detailed similarity
information. The extrinsic similarity column contains hyperlink to structural similarity
overview report. This report is basically divided into several parts. The first part is a
table listing corresponding extrinsically similar units. After that a table is presented which
shows the directed average structural similarity values for each pair of units. For example,
the boxed entry in the overview report (fig. 7.4a) shows that there are 3 extrinsically
similar units with name psr PmpSpdRestrnt. It is linked to the structural overview
report. The table shown in figure 7.7 is the first part of this report. It shows detailed
information about the extrinsically similar units. A close inspection of this table reveals

74

Figure 7.5: Semantical similarity from the overview report. (The whole image including
skipped grayed out parts is in appendix A.3)

Figure 7.6: Extrinsically matched units.

that the units are from different projects but they have the same name (boxed entries in
fig. 7.6). The second part of this structural overview report is shown in figure 7.7. It
shows the structural similarity percentage for units from different projects. For example,
the unit that comes from Dieter C1MCA is 30% similar to the one coming from Dieter
CMA SPA and 100% similar to Dieter KC2.

The rest of the structural similarity overview report contains signal based directed sim-
ilarity information. This part is divided into several tables where each of the table is
dedicated to one particular kind of signal. An example is shown in figure 7.8 which
shows the structural similarity percentages of CAL signals for the extrinsically similar
unit psr PmpSpdRestrnt from different projects. Other tables dedicated to other kind
of signals are similar to this table except the table for OUT signals.

Besides structural similarity information the table for OUT signal also show corresponding
semantical similarity information. As the figure 7.9 presents, there are two groups of
percentage beside every signal name. The first group shows the structural similarity and
the second one shows the semantical information. A dash (-) instead of a numeric value
means that the semantical similarity calculation process did not complete.

Similarity percentages beside the signal names are also link to a more detailed structural

75

Figure 7.7: Structural similarity overview.

Figure 7.8: Structural similarity overview of CAL signals.

Figure 7.9: Structural similarity overview of OUT signals.

and, in case of OUT signals, semantical similarity report. This report breaks down the sig-
nal based structural similarity to individual attributes. In case of OUT signals a directed
semantical similarity information is also shown. An example is presented in figure 7.10,
showing the attribute similarity information including the attribute values. The first two
columns shows the signal’s source project and the attribute similarity values are directed
from the first project to the second project.

In case of OUT signal an additional column showing directed semantical similarity is
also added. For example, the figure 7.10 shows that the corresponding OUT signals are
semantically 100% similar to each other. Further semantical similarity information is
shown after the table like it is shown in figure 7.11. In this case, the semantical similarity
was not calculated due to the non-deterministic nature of the corresponding automatons.

The similarity reports shown in figure 7.11 are also linked from the similarity overview
report (fig. 7.4). As explained earlier, this reports shows maximum and minimum values
of structural and semantical similarity for the corresponding units. And these cells not
only contains text but also hyperlinks which leads to the corresponding attribute based
similarity report.

76

Figure 7.10: Attribute based structural similarity and semantical similarity (The whole
image including skipped grayed out parts is in appendix A.4)

Figure 7.11: Semantical similarity messages. (The whole image including skipped grayed
out parts is in appendix A.5)

7.3 Code quality

For evaluating the code quality of the SimA framework, the evaluation criteria or metrics
defined in [RH97] are used. This metric has been developed for object oriented languages
and therefore, suitable for the SimA framework. The metrics defined in [RH97] involves
complex mathematical calculation to generate score values. Based on these results the
quality is measured. However, for the sake of simplicity, in this section the metrics are
used from a hypothetical point of view. Which means, the SimA framework is examined
based on the idea behind each of the metric skipping the complex calculation.

Method size - Ease of understandability or readability depends on the size of a method.
Larger methods are harder to understand and read. The size of a method can
be calculated based on the line of codes [RH97]. In the context of SimA frame-
work, it has been tried to keep the method size less than 10 lines. Sometimes,
long lines has been broken to multiple likes which can be counted as a single
line. However, a few long methods can be found in the report generation
and similarity calculation module. In these cases, the methods has been
given very descriptive name and the task performed by these methods has been kept
very specific to avoid any ambiguity. For example, the create units table data
method from report generation module. It generates a TableData object con-
taining information about a list of Unit. The name clearly identifies the intension.

77

Methods per class - The number of methods per class is an indication of the class’s
complexity. More methods results into a complex and large class. This measure is
often used with the Method size metric to predict effort and maintenance difficulty
of a class [RH97]. In the context of SimA, classes are kept simple and performs
very specific task. Hence, they are not very long and most of the classes contain
less than 5 methods. For example, the ExcelUnitReader class has 5 methods
and each of them are shorter than 10 lines. This class was developed for reading
Unit from excel files and that is what it does. On the other hand, there are classes
like UnitUsageHtmlReport which has 14 methods and some of them are as long
as 15 lines. It generates the similarity overview report which requires some com-
plex data processing. This process has been broken down to smaller tasks which
resulted into higher count of methods. Some of them could have been extracted
to create a data processing class. But, these operations are very specific to the
UnitUsageHtmlReport class and creating a separate class would simply increase
the development time without any significant gain in return.

Lack of cohesion of methods - Methods in a class are in high level of cohesion if they
are processing same kind of data [RH97]. This high level of cohesion implies that the
methods of that class are focused to perform specific task. Lack of cohesion among
the methods of a class refers to the possibility of sub-dividing the methods to two or
more disjoint classes and increases the complexity of the corresponding class. The
development of SimA has followed the single responsibility principle [Mar03] where
one class has only one defined task. Which has resulted into smaller classes and high
level of cohesion among methods of same class.

Coupling between object classes - Two objects or classes are considered as coupled
when they are directly communicating with each other or using methods and attrib-
utes from the other class. Inheriting from another class couples the subclass with the
superclass [RH97]. Non-inheritance coupling is considered to be harmful for modular
design and makes classes less reusable. SimA solves this problem with dependency
injection (explained in sec. 2.8.1). With this technique, class dependencies are al-
ways passed as constructor parameter. The expected type of the parameter object is
an interface which can be replaces with any implementation. Therefore, two classes
communicate with each other through an interface and never directly. This keeps
the coupling factor to a bare minimum.

Depth of inheritance - In an inheritance hierarchy the maximum depth starting from
the root is the depth of inheritance [RH97]. A higher depth means that the child class
inherits more methods from the parent classes which makes it harder to predict the
exact behavior and significantly increases the class complexity. The SimA framework
does not create any unnecessary hierarchy and tries to keep the depth as short as
possible. Most classes in SimA has a inheritance depth of 3 considering the object
root class. The highest depth of inheritance is 4 (e.g. ExcelUnitReader).

78

Chapter 8

Conclusion

The goal of this thesis was to design and develop a tool that can analyse similarities among
different software components for providing valuable feedback to the APLE process and
help maintain an active SPL. The similarity analysis framework (SimA) was developed
to achieve this goal. It performs similarity analysis from different levels and generates
reports based on the results. Moreover, SimA is not only a tool that can perform above
mentioned tasks, but also is a framework that exposes interfaces to extend and alter its
default behaviour to a certain extent.

SimA’s current implementation of various interfaces is implemented in the context of
FEV GmbH. The framework reads various project and software component data from the
company’s SVN repository and performs extrinsic, structural and semantical similarity
analysis on them. Finally, HTML based reports are generated which presents the similarity
results and useful information about different software projects.

The similarity calculation functionalities are provided by external tools and SimA provides
simple unified interfaces to communicate with them. The extrinsic similarity calculation is
provided by the extrinsic similarity package which follows the algorithm explained
in [BRR+14b]. The struct analysis package is responsible for structural similarity
analysis which is implemented based on the methodologies presented in [KRS+16]. The
project test-based-validation-tool is implemented in Java and calculates test
case based semantical similarity according to the algorithm presented in [RRS+16]. These
projects and packages follow their own data representations and generate results in differ-
ent formats. SimA converts them into its own standard data representation and processes
the results to establish correlation among them.

The calculated similarity result is used for generating reports. SimA defines separate
interface for report generation and controls it from an abstract level. On the concrete
implementation level the isddgf package is used for report generation. This package
was developed according to the methodologies presented in [Kha16] and provides Python
interface for generating HTML based documents.

A workflow definition specified by SimA governs the whole process string from data import
to report generation. The workflow also includes generation of excel based global list
of software components which includes information about all available components from
different projects and their usage data. This list is automatically updated every time the
workflow is executed keeping the global list up to date.

79

SimA has been developed to be robust and work under erroneous data situations. In
the context of FEV GmbH, it has been tested and improved several times which has
contributed to its robustness. Currently, it is part of FEV’s nightly build process and
the generated reports are being used to maintain a more effective yet cheaper software
development life cycle.

80

Bibliography

[BHDG10] Huang Bo, Dong Hui, Wang Dafang, and Zhao Guifan. Basic concepts on
autosar development. In Intelligent Computation Technology and Automa-
tion (ICICTA), 2010 International Conference on, volume 1, pages 871–873.
IEEE, 2010.

[Bol04] Béla Bollobás. Extremal graph theory. Courier Corporation, 2004.

[Bro06] Manfred Broy. Challenges in automotive software engineering. In Proceedings
of the 28th international conference on Software engineering, pages 33–42.
ACM, 2006.

[BRR14a] Christian Berger, Holger Rendel, and Bernhard Rumpe. Measuring the
ability to form a product line from existing products. arXiv preprint
arXiv:1409.6583, 2014.

[BRR+14b] Christian Berger, Holger Rendel, Bernhard Rumpe, Carsten Busse, Thorsten
Jablonski, and Fabian Wolf. Product line metrics for legacy software in
practice. arXiv preprint arXiv:1409.6581, 2014.

[FFL09] Fabrizio Fabbrini, Mario Fusani, and Giuseppe Lami. One decade of software
process assessments in automotive: a retrospective analysis. In Computing
in the Global Information Technology, 2009. ICCGI’09. Fourth International
Multi-Conference on, pages 92–97. IEEE, 2009.

[Fow04] Martin Fowler. Inversion of control containers and the dependency injection
pattern. 2004.

[Gam95] Erich Gamma. Design patterns: elements of reusable object-oriented software.
Pearson Education India, 1995.

[HC01] Jim Highsmith and Alistair Cockburn. Agile software development: The
business of innovation. Computer, 34(9):120–127, 2001.

[Keh15] Philipp Kehrbusch. Structural compatibility analysis of software compon-
ents, 2015.

[Kha16] Safdar Dabeer Khan. Interactive software design document generation frame-
work for the automotive industry, 2016.

[KLD02] Kyo C Kang, Jaejoon Lee, and Patrick Donohoe. Feature-oriented product
line engineering. IEEE software, 19(4):58, 2002.

[Kot03] Martin Kot. The state explosion problem. 2003.

81

[KRS+16] Phillipp Kehrbusch, Bernhard Rumpe, Christoph Schulze, Johannes Richen-
hagen, and Axel Schloßer. Interface based similarity analysis of software
components for the automotive industry. 2016.

[Lev66] Vladimir I Levenshtein. Binary codes capable of correcting deletions, inser-
tions and reversals. In Soviet physics doklady, volume 10, page 707, 1966.

[LJK+01] Jong Kook Lee, Seung Jae Jung, Soo Dong Kim, Woo Hyun Jang, and
Dong Han Ham. Component identification method with coupling and co-
hesion. In Software Engineering Conference, 2001. APSEC 2001. Eighth
Asia-Pacific, pages 79–86. IEEE, 2001.

[Mar03] Robert Cecil Martin. Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[McG04] John D McGregor. Software product lines. 2004.

[MdL01] Marcus Eduardo Markiewicz and Carlos JP de Lucena. Object oriented
framework development. Crossroads, 7(4):3–9, 2001.

[ML75] Ward Douglas Maurer and Theodore Gyle Lewis. Hash table methods. ACM
Computing Surveys (CSUR), 7(1):5–19, 1975.

[MTK94] Dieter Merkl, A Min Tjoa, and Gerti Kappel. Learning the semantic sim-
ilarity of reusable software components. In Software Reuse: Advances in
Software Reusability, 1994. Proceedings., Third International Conference on,
pages 33–41. IEEE, 1994.

[MW03] E Michael Maximilien and Laurie Williams. Assessing test-driven develop-
ment at ibm. In Software Engineering, 2003. Proceedings. 25th International
Conference on, pages 564–569. IEEE, 2003.

[Nei09] Danuza Ferreira Santana Neiva. Riple-re: A requirements engineering process
for software product lines. PhD thesis, M. Sc. Dissertation, Universidade
Federal de Pernambuco, Brazil, 2009.

[Nor02] Linda M Northrop. Sei’s software product line tenets. IEEE software,
19(4):32, 2002.

[PBKS07] Alexander Pretschner, Manfred Broy, Ingolf H Kruger, and Thomas Stauner.
Software engineering for automotive systems: A roadmap. In 2007 Future of
Software Engineering, pages 55–71. IEEE Computer Society, 2007.

[PBvDL05] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. Software product
line engineering: foundations, principles and techniques. Springer Science &
Business Media, 2005.

[PPJ+13] Amit Patel, Antoine Picard, Eugene Jhong, Jeremy Hylton, Matt Smart, and
Mike Shields. Google python style guide. available in HTML form. URL:
http://google-styleguide. googlecode. com/svn/trunk/pyguide. html, 12, 2013.

[PULPT02] Lutz Prechelt, Barbara Unger-Lamprecht, Michael Philippsen, and Walter F
Tichy. Two controlled experiments assessing the usefulness of design pattern
documentation in program maintenance. IEEE Transactions on Software
Engineering, 28(6):595–606, 2002.

82

[RH97] Linda H Rosenberg and Lawrence E Hyatt. Software quality metrics for
object-oriented environments. Crosstalk Journal, April, 10(4):1–6, 1997.

[RPS14] Johannes Richenhagen, Stefan Pischinger, and Axel Schloßer. Persist-a flex-
ible and automatically verifiable software architecture for the automotive
powertrain. Journal of Electrical Engineering, 2(3):108–115, 2014.

[RRS+16] Johannes Richenhagen, Bernhard Rumpe, Axel Schloßer, Christoph Schulze,
Kevin Thissen, and Michael von Wenckstern. Test-driven semantical simil-
arity analysis for software product line extraction. 2016.

[RSRS15] Bernhard Rumpe, Christoph Schulze, Johannes Richenhagen, and Axel
Schloßer. Agile synchronization between a software product line and its
products. In GI-Jahrestagung, pages 1687–1698, 2015.

[RSVW+15] Bernhard Rumpe, Christoph Schulze, Michael Von Wenckstern, Jan Oliver
Ringert, and Peter Manhart. Behavioral compatibility of simulink models
for product line maintenance and evolution. In Proceedings of the 19th Inter-
national Conference on Software Product Line, pages 141–150. ACM, 2015.

[RSW+15] Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern, Jan Oliver
Ringert, and Peter Manhart. Behavioral Compatibility of Simulink Models
for Product Line Maintenance and Evolution. In SPLC 2015, 2015.

[Thi15] Kevin Thissen. Testbasierte kompatibilitätsanalysen von funktionskompon-
enten, 2015.

[TT01] Barry N Taylor and Ambler Thompson. The international system of units
(si). 2001.

[www16] Introduction to AUTOSAR https://elearning.vector.com/vl_
autosar_introduction_en.html, July 2016. Accessed: July 25, 2016.

[ZK12] Changyan Zhou and Ratnesh Kumar. Semantic translation of simulink dia-
grams to input/output extended finite automata. Discrete Event Dynamic
Systems, 22(2):223–247, 2012.

83

84

Appendix A

Appendix

Figure A.1: Project status report

Figure A.2: Units missing simulink models from project xDct.

85

(a) Part 1

(b) Part 2

(c) Part 3

Figure A.3: Similarity overview report sliced into parts.

86

Figure A.4: Attribute based structural similarity and semantical similarity full image.

Figure A.5: Semantical similarity messages full image.

87

88

